
http://crossmark.crossref.org/dialog/?doi=10.1145%2F1900520.1900545&domain=pdf&date_stamp=2010-12-15

Saturday, December 18th (Room E5)

PART I: Introduction to Processing for Android
(14:15 -16:00, Jihyun Kim)

PART II: Fast 3D Graphics in Processing for Android
(16:15 - 18:00, Andres Colubri)

The key topics of this course consist in getting

started with Processing development on Android

devices, introducing the main characteristics of the

Android platform, running simple graphic

applications and uploading them to the phones,

and grasping the possibilities offered by more

advanced features such as OpenGL-accelerated

3D graphics. A central objective is to provide

enough basic material and motivation to the

attendees of this course so they can proceed with

further explorations of the Android platform and

Processing language.

PART I:

Introduction to Processing for Android

(14:15 - 16:00, Presenter: Jihyun Kim)

PART II:

Fast 3D Graphics in Processing for Android

(16:15 - 18:00, Presenter: Andres Colubri)

1. What is Android? (10min)

2. What is Processing? (10min)

3. Basic concepts in Android applications (15min)

4. First steps with Processing for Android (20min)

5. Basic Processing use (30min)

6. Extending Processing (20min)

7. OpenGL and Processing (15min)

8. Geometrical transformations (10min)

9. Camera and perspective (10min)

10. Creating 3D objects (30min)

11. 3D text (10min)

12. Models: the PShape3D class (30min)

CONTENTS

1.What is Android? (14:15 – 14:25)

1.1 Android devices

1.2. Development process and Android Market

1.3. Hardware (input devices, touchscreen, accelerometer, GPS, compass)

2. What is Processing? (14:25 – 14:35)

2.1 Main goals of Processing

2.2 Use in education and artistic/design production

2.3 Overview of Processing libraries

3. Basic concepts in Android applications (14:35 – 14:50)

3.1 Views, Activities, Intents, and the manifest file

3.2 Android Software Development Kit (SDK)

3.3 Use of Eclipse for Android development

PART I:

Introduction to Processing for Android

(14:15-16:00) Presenter: Jihyun Kim

4. First steps with Processing for Android (14:50 – 15:10)

4.1 Installation of the Android SDK and Processing

4.2. Android mode in Processing

4.3 Running sketches on the emulator and the device

5. Basic Processing use (15:10 – 15:40)

5.1 Drawing of 2D shapes and use of color

5.2 Animation and motion

5.3 Media (Images and Fonts)

5.4 Interaction (keyboard, touchscreen, multitouch handling)

6. Extending Processing (15:40 – 16:00)

6.1 Libraries for Android (oscP5, controlP5, Ketai in Motion)

6.2 Accessing other Android hardware (camera, GPS)

PART I:

Introduction to Processing for Android

(14:15-16:00) Presenter: Jihyun Kim

7. OpenGL and Processing (16:15 – 16:30)

7.1 OpenGL ES for mobile devices

7.2 Mobile GPUs (Adreno, PowerSVG, Tegra)

7.3 Hardware requirements for 3D in Processing for Android

7.4 The A3D renderer

7.5 Using offscreen drawing

8. Geometrical transformations (16:30 – 16:40)

8.1 Translations, rotations, scaling

8.2 The transformation matrix stack

9. Camera and perspective (16:40 – 16:50)

9.1 Camera placement

9.2 Perspective and orthographic views

PART II:

Fast 3D Graphics in Processing for Android

(16:15 – 18:00) Presenter: Andres Colubri

10. Creating 3D objects (16:50 – 17:20)

10.1 Using the Processing API to create basic 3D primitives: boxes,

spheres, vertex shapes

10.2 Texturing and lighting

11. 3D text (17:20 – 17:30)

11.1 Using system fonts to create text on the fly

11.2 API to handle and transform text strings

12. Models: the PShape3D class (17:30 – 18:00)

12.1 Introduction to Vertex Buffer Objects (VBOs)

12.2 Techniques for creating PShape3D models: OBJ loading, shape

recording, SVG copy

12.3 Particle systems

PART II:

Fast 3D Graphics in Processing for Android

(16:15 – 18:00) Presenter: Andres Colubri

PART I:

Introduction to

Processing for

Android

Android is an operating system based on Linux with a Java programming

interface. It provides tools, e.g. a compiler, debugger and a device emulator

as well as its own Java Virtual machine (Dalvik Virtual Machine - DVM).

Android is created by the Open Handset Alliance which is lead by Google.

1. What is Android?

“Android is the first truly open and

comprehensive platform for mobile devices. It

includes an operating system, user-interface and

applications -- all of the software to run a

mobile phone, but without the proprietary

obstacles that have hindered mobile innovation.”

(http://googleblog.blogspot.com/2007/11/wheres-my-gphone.html)

http://www.youtube.com/watch?v=ptjedOZEXPM

Google I/O 2008 - Dalvik Virtual Machine Internals﻿

Android uses a special Java virtual machine (Dalvik) which is based on the

Apache Harmony Java implementation. Dalvik uses special bytecode.

Therefore you cannot run standard Java bytecode on Android. Android

provides a tool "dx" which allows to convert Java Class files into "dex" (Dalvik

Executable) files. Android applications are then packed into an .apk (Android

Package) file.

Java language compiles to

-> Dalvik byte-code which runs on

-> Dalvik virtual machine

-> Inside the Android OS (Linux-based)

1. Application framework: enabling reuse and replacement of components

2. Dalvik virtual machine: optimized for mobile devices

3. Integrated browser: based on the open source WebKit engine

4. Optimized graphics: powered by a custom 2D graphics library; 3D graphics

based on the OpenGL ES 1.0 specification (hardware acceleration optional)

5. SQLite for structured data storage

6. Media support for common audio, video, and still image formats (MPEG4,

H.264, MP3, AAC, AMR, JPG, PNG, GIF)

7. GSM Telephony (hardware dependent)

8. Bluetooth, EDGE, 3G, and WiFi (hardware dependent)

9. Camera, GPS, compass, and accelerometer (hardware dependent)

10. Rich development environment including a device emulator, tools for

debugging, memory and performance profiling, and a plugin for the Eclipse

IDE

http://developer.android.com/guide/basics/what-is-android.html

Features

1.1 Android devices

The Open Handset Alliance publishes a series of hardware

specifications that all the devices for Android must comply with.

For Android 2.1, these are:

1. DISPLAY: Minimum QVGA (240x320) with portrait and landscape orientation

2. KEYBOARD: Must support soft keyboard

3. TOUCHSCREEN: Must have (not necessarily multitouch)

4. USB: USB-A port required for communication with host.

5. NAVIAGTION KEYS: Home, menu and back required

6. WIFI: Required,implementing one protocol that supports at least 200Kbit/sec

7. CAMERA: Required, at least one rear-facing with 2MP

8. ACCELEROMETER: 3-axis accelerometer required

9. COMPASS: 3-axis compass required

10. GPS: must include GPS receiver

11. TELEPHONY: Android 2.2 MAY be used on devices that do not include

telephony hardware.

12. MEMORY AND STORAGE: At least 92Mb memory for kernel, 150Mb for non-

volatile storage for user data

13. APPLICATION SHARED STORAGE: Must provide at least 2GB.

Android Compatibility Program: http://source.android.com/compatibility/overview.html

1.1 Android devices

Many hardware manufacturers are producing Android

handsets: HTC, Samsung, Motorola, LG, Sony Ericsson...

For a comprehensive list, check this website:

http://www.androphones.com/all-android-phones.php

Android Development Flow

http://stuffthathappens.com/blog/2008/11/05/android-

development-flow/

1.2 Development process and Android Market

1. writing code on host

computer

2. using text editor/command

line or Eclipse (with ADT)

(and now Processing).

3. Testing/debugging on

Emulator

4. Upload to device

5. ADB allows to debug on

device

Basic Idea:

Android Market is an online software store

developed by Google for Android devices. An

application called "Market" is preinstalled on most

Android devices and allows users to browse and

download apps published by third-party developers,

hosted on Android Market.

http://www.android.com/market/

1.2 Development process and Android Market

1.2 Development process and Android Market

1.3 Hardware

Android devices have a common basic set of

hardware features such as multitouch screen...

Accelerometer GPS

1.3 Hardware

Now there is a lot of interest in the

upcoming Android tablets (Samsung Tab,

Odroid-T), which extend Android to new

areas of use and interaction.

http://www.hardkernel.com/productsodroidt.php

1.3 Hardware

Processing is an open source programming language and environment

for people who want to create images, animations, and interactions.

Initially developed to serve as a software sketchbook and to teach

fundamentals of computer programming within a visual context,

Processing also has evolved into a tool for generating finished

professional work. Today, tens of thousands of students, artists,

designers, researchers, and hobbyists who use Processing for learning,

prototyping, and production.

2. What is Processing?

From a more technical perspective, Processing is two things:

1. A minimal Development Environment (Called PDE), that

favors ease of use over functionality

2. A programming language, and as such is basically a dialect

built on top of Java to make graphics programming less

cumbersome thanks to a simple API.

Processing was originally created

with the purpose of making

programming of graphics and

interaction more accessible for

people without technical background.

2.1. Main goals of Processing

Simplicity

Flexibility

2.1. Main goals of Processing

Many types of information can flow

in and out of Processing.

Casey Reas and Ben Fry.

<Getting Started with Processing>.

O’Really Media, 2010

2.1. Main goals of Processing

Family

Tree

Processing has a large family of related

languages and programming environments

Casey Reas and Ben Fry.

<Getting Started with Processing>.

O’Really Media, 2010

2.2 Use in education and
Artistic/Design Production

Processing started as a

project at the MIT Media

Lab, and its direct ancestor

was another language

called Design By Numbers

(DBN).

The goal of DBN was to

teach programming to art

and design students.

This was also one of the

first applications of

Processing (and still is).

2.2 Use in education and
Artistic/Design Production

sketches from classes on OpenProcessing.

http://openprocessing.org/collections/

Processing is also widely used

in prototyping and final

production of applications in

many different areas:

interactivity, generative

graphics, physical computing,

and data visualization.

works based on Processing at this website:

http://processing.org/exhibition/

2.2 Use in education and
Artistic/Design Production

Interactivity

2.2 Use in education and
Artistic/Design Production

<Oasis>, 2008: Yunsil Heo, Hyunwoo Bang

http://everyware.kr/portfolio/contents/09_oasis/

<Shadow Monsters>, 2005, Philip Worthington

http://worthersoriginal.com/

<In the Air>, 2008, Victor Viña, Nerea Calvillo

http://www.intheair.es/

Data

Visualization

2.2 Use in education and
Artistic/Design Production

<FLUflux>, 2009, Andres Colubri, Jihyun Kim

http://threeecologies.com/fluflux/

<Light Roller>, 2006, Random

International

http://www.random-international.com/

Physical

Computing

2.2 Use in education and
Artistic/Design Production

<Openings>, 2008, Andrea Boeck, Jihyun Kim,

and Justin Liu

http://we-make-money-not-art.com/

<Vattnfall Media Façade> Art+Com

http://www.artcom.de/

2.2 Use in education and
Artistic/Design Production

< Latent State >, 2009, Andres Colubri_

live cinema performance

Real-time

graphics

and video

<Process 6> Casey Reas

http://reas.com/category.php?section=works

2.2.5 Generative art

2.2 Use in education and
Artistic/Design Production

<Magnetic Ink, pt. 3> Robert Hodgin

http://www.flight404.com/blog/?p=103

Processing allows more than 100 external libraries contributed by the community.

2.3 Overview of Processing Libraries

An Android application consists out of the following parts:

1.Activity - A screen in the Android application

2.Services - Background activities without UI

3.Content Provider - provides data to applications, Android contains a

SQLLite DB which can serve as data provider

4.Broadcast Receiver - receives system messages, can be used to react to

changed conditions in the system

5.Intents - allow the application to request and/or provide services . For

example the application call ask via an intent for a contact application.

Application register itself via an IntentFilter. Intends are a powerful

concept as they allow to create loosely coupled applications.

https://sites.google.com/site/androidappcourse/

3. Basic Concepts in Android application

the major components of the Android operating system

http://developer.android.com/guide/basics/what-is-android.html

3.1 Views, Activities, Intents, and the manifest file

Views

The visual content of the window is provided by

a hierarchy of views — objects derived from the

base View class. Each view controls a particular

rectangular space within the window.

<?xml version="1.0" encoding="utf-8"?>

<AbsoluteLayout

android:id="@+id/myAbsoluteLayout"

android:layout_width="fill_parent"

android:layout_height="fill_parent"

android:background="@drawable/black"

xmlns:android="http://schemas.android.com/apk/r

es/android"> <Spinner

android:id="@+id/mySpinner"

android:layout_width="fill_parent"

android:layout_height="wrap_content"

android:layout_x="0px"

android:layout_y="82px" > </Spinner> <Button

id="@+id/myButton"

android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:background="@drawable/darkgray"

android:text="Ok" android:layout_x="80px"

android:layout_y="122px" > </Button>

</AbsoluteLayout>

GUI

design

Android uses an XML based markup

language to define user interface

layouts, in a way that's similar to

UIML. XML is used to create flexible

interfaces which can then be

modified and wired up in the Java

code. Mozilla's XUL, Windows

Presentation Foundation XAML, and

Macromedia Flex's MXML (and to

some extent even SVG) all operate

similarly.

Each node in the XML tree

corresponds to a screen object or

layout container that will appear in

the rendered interface..from http://vis.berkeley.edu/courses/cs160-

sp08/wiki/index.php/Getting_Started_with_Android

3.1 Views, Activities, Intents, and the manifest file

An activity presents a visual user interface for one focused endeavor the user

can undertake. For example, an activity might present a list of menu items

users can choose from or it might display photographs along with their

captions. Though they work together to form a cohesive user interface, each

activity is independent of the others. An application might consist of just one

activity or, like the text messaging application just mentioned, it may contain

several.

Each activity is given a default window to draw in. Typically, the window fills

the screen, but it might be smaller than the screen and float on top of other

windows.

3.1 Views, Activities, Intents, and the manifest file

Activities

http://developer.android.com/guide/topics/fundamentals.html

Activity lifecycle

http://developer.android.com/reference/android/

app/Activity.html

A service doesn't have a visual user interface, but rather runs in the

background for an indefinite period of time. For example, a service might

play background music as the user attends to other matters, or it might

fetch data over the network or calculate something and provide the result

to activities that need it.

3.1 Views, Activities, Intents, and the manifest file

Service

http://blog.gbinghan.com/2010/08/android-basics-quick-start.html

http://developer.android.com/guide/topics/fundamentals.html

Intents

3.1 Views, Activities, Intents, and the manifest file

http://developer.android.com/guide/topics/fundamentals.html

Content providers are activated when they're targeted by a request from a

ContentResolver. The other three components — activities, services, and

broadcast receivers — are activated by asynchronous messages called intents.

An intent is an object that holds the content of the message. For activities and

services, it names the action being requested and specifies the URI of the data

to act on, among other things.

An Android application is described in the file "AndroidManifest.xml".

This file contains all activities application and the required permissions for the

application. For example if the application requires network access it must be

specified here. "AndroidManifest.xml" can be thought as the deployment

descriptor for an Android application.

3.1 Views, Activities, Intents, and the manifest file

Manifest file

The Android SDK includes a comprehensive set of development tools. These

include a debugger, libraries, a handset emulator (based on QEMU),

documentation, sample code, and tutorials.

Currently supported development platforms include x86-architecture

computers running Linux (any modern desktop Linux distribution), Mac OS

X 10.4.8 or later, Windows XP or Vista. Requirements also include Java

Development Kit, Apache Ant, and Python 2.2 or later. The officially

supported integrated development environment (IDE) is Eclipse (3.2 or later)

using the Android Development Tools (ADT) Plugin, though developers may

use any text editor to edit Java and XML files then use command line tools

to create, build and debug Android applications as well as control attached

Android devices (e.g., triggering a reboot, installing software package(s)

remotely).

3.2 Android Software Development Kit (SDK)

Eclipse can be used as the IDE for Android development. To do so, you need to

install the SDK and then the: ADT (Android Development Tools)

Android Development Tools (ADT) is a plugin for the Eclipse IDE that is designed to

give you a powerful, integrated environment in which to build Android applications.

ADT extends the capabilities of Eclipse to let you quickly set up new Android projects,

create an application UI, add components based on the Android Framework API,

debug your applications using the Android SDK tools, and even export signed (or

unsigned) APKs in order to distribute your application.

3.3 Use of Eclipse for Android development

Disadvantages using Eclipse

For single screen interactive or data sensing applications, Eclipse and the

full SDK of Android might result unnecessarily complex, and very

challenging for beginners. Also, the drawing API, both in 2D and 3D

(OpenGL ES), could be time consuming to learn and use.

3.3 Use of Eclipse for Android development

from the Android section in the Processing wiki:

"The primary goal of this project is to make it foolishly easy to create Android

apps using the Processing API. Once you have Processing on your machine (and

the Android developer tools), you can simply write a line of code, hit 'Run' (or Ctrl-

R), and have your sketch show up in the emulator as a working Android app.

Select 'Present' (or use Ctrl-Shift-R) to have it run on an Android device that you

have plugged into your machine. That's good stuff!"

Solution: Processing for Android!

3.3 Use of Eclipse for Android development

4. First steps with Processing for Android

4.1 Installation of the Android SDK and Processing

Download the Android SDK from

the Android homepage under

Android SDK download. The

download contains a zip file which

you can extract to any place in

your file system.

Detailed instructions

http://developer.android.com/sdk/installin

g.html

http://developer.android.com/

http://java.sun.com/javase/downloads/index.jsp

http://processing.org/download/

http://developer.android.com/http:/processing.org/download/
http://developer.android.com/http:/processing.org/download/
http://java.sun.com/javase/downloads/index.jsp
http://java.sun.com/javase/downloads/index.jsp
http://processing.org/download/
http://processing.org/download/

1. Make sure that you install the JDK first...

2. Download latest package from

http://developer.android.com/sdk/index.html

3. Unzip package at the place of your preference…

C:\Users\andres\Coding\android-sdk-windows

4. Add the environmental variables PATH and ANDROID_SDK

5. Also, if the path to the bin folder of the JDK is not in the PATH, add it

as well.

6. The last step in setting up your SDK is using a tool included the SDK

starter package — the Android SDK and AVD Manager . You can

start it by double-clicking on android.exe in the tools folder

4.1 Installation of the Android SDK and Processing

Windows

4.1 Installation of the Android SDK and Processing

These are the minimal components of the SDK required to use

Processing for Android (SDK and APIs 7), and in windows the Usb

driver package (very important!)

This procedure is very important in Windows to be able to connect the

Android devices to Processing.

The USB driver that comes with the Android SDK provides support only for

the following (or similar) devices:

T-Mobile G1* / ADP1

T-Mobile myTouch 3G* / Google Ion

Verizon Droid*

Nexus One

After downloading the usb driver in the previous step (it gets copied to

C:\Users\andres\Coding\android-sdk-windows\usb_driver) you have to

install it following the steps indicated here:

http://developer.android.com/sdk/win-usb.html

4.1 Installation of the Android SDK and Processing

USB driver installation

Other phones might require manufacturer's USB

drivers. For instance, the ones for the Galaxy S are

available here: http://forum.xda-

developers.com/showthread.php?t=728929

After installation, the phone should appear in the

Device Manager as follows:

4.1 Installation of the Android SDK and Processing

http://forum.xda-developers.com/showthread.php?t=728929
http://forum.xda-developers.com/showthread.php?t=728929
http://forum.xda-developers.com/showthread.php?t=728929
http://forum.xda-developers.com/showthread.php?t=728929
http://forum.xda-developers.com/showthread.php?t=728929
http://forum.xda-developers.com/showthread.php?t=728929

4.1 Installation of the Android SDK and Processing

Setting environmental variables in Windows

Mac OSX

1. Download latest package from

http://developer.android.com/sdk/index.html

2. Unzip package at the place of your preference...

/Users/andres/Coding/Android/android-sdk-mac_x86

3. On a Mac OS X, look in your home directory for .bash_profile and

proceed as for Linux. You can create the .bash_profile if you haven't

already set one up on your machine and add

4. The last step in setting up your SDK is using a tool included the SDK

starter package — the Android SDK and AVD Manager . You can start

it from the terminal by typing android

export PATH=${PATH}:<your_sdk_dir>/tool

export ANDROID_SDK=${PATH}:<your_sdk_dir> in our case this would be:

export PATH=${PATH}:/Users/andres/Coding/Android/android-sdk-mac_x86/tools

export ANDROID_SDK=/Users/andres/Coding/Android/android-sdk-mac_x86

4.1 Installation of the Android SDK and Processing

Make sure to install:

- SDK Platform Android 2.1, API 7

- Google APIs by Google Inc., Android API 7

4.1 Installation of the Android SDK and Processing

1. Make sure that you install the sun-java JDK first. On Ubuntu:

sudo apt-get install sun-java6-jdk

2. Download latest linux package from

http://developer.android.com/sdk/index.html

3. Unzip package at the place of your preference...

/home/andres/Coding/Android/android-sdk-linux_x86

On 64 bits machine, you might need to install soma additional packages:

http://stackoverflow.com/questions/2710499/android-sdk-on-a-64-bit-linux-machine

4. Add the environmental variables PATH and ANDROID_SDK

5. On Linux, edit your ~/.bash_profile or ~/.bashrc file. Look for a line that sets the

PATH environment variable and add the full path to the tools/ directory to it. If you

don't see a line setting the path, you can add one:

export PATH=${PATH}:<your_sdk_dir>/toolsexport

ANDROID_SDK=<your_sdk_dir>

6. The last step in setting up your SDK is using a tool included the SDK starter

package — the Android SDK and AVD Manager . You can start it running android

from the terminal.

Linux

4.1 Installation of the Android SDK and Processing

4.1 Installation of the Android SDK and Processing

4.1 Installation of the Android SDK and Processing

For windows and Linux,

uncompress the zip/tgz

in the desired location,

in the case of OSX

open the dmg package

and copy to

ApplicationsProcessing website:

http://processing.org/download/

Download

Processing

4.2 Android Mode in Processing

To run our code on the Android

emulator or on the Android

device, we need to set enable

the Android mode in the PDE.

If missing the ANDROID_SDK

variable, just select the folder

when asked

4.2 Android Mode in Processing

• Run - preprocess the current sketch, create an Android project, and

run (debug) it in the Android emulator.

• Present - the same as Run, but run on a device (phone) that's attached

by USB.

• Export - creates an 'android' folder that contains the files necessary to

build an APK using Ant.

• Export to Application - same as export, but creates a signed version of

the 'release' build.

4.2 Android Mode in Processing

Android

Emulator

4.3 Running Sketches on the emulator and the device

The device has to be properly connected to the USB port, and running at least

Android 2.1.

On Linux, you might need to run first the following commands from the terminal:

adb-killserver

cd <sdk location>/tools

sudo ./adb start-server

Type adb devices to get the list of currently connected devices.

4.3 Running Sketches on the emulator and the device

Android

Permissions

If you want to load data from the internet, or

otherwise connect to other servers, you'll need to

enable INTERNET permission for your sketch. To

do so, use Tools → Android Permissions to bring

up the permissions editor. Check the box next to

internet.

If you want to use methods

like saveStrings() or createWriter, you'll need to

enable WRITE_EXTERNAL_STORAGE so that you

can save things to the built-in flash a plug-in

card.

There are similar permissions for access to the

phone, compass, etc. Look through the list in

the permissions dialog, or check out other

documentation that explains Android

permissions in greater detail:

http://developer.android.com/guide/topics/security/security

.html#permissions

http://developer.android.com/reference/android/Manifest.

permission.html

4.3 Running Sketches on the emulator and the device

http://developer.android.com/guide/topics/security/security.html#permissions
http://developer.android.com/guide/topics/security/security.html#permissions
http://developer.android.com/guide/topics/security/security.html#permissions
http://developer.android.com/reference/android/Manifest.permission.html
http://developer.android.com/reference/android/Manifest.permission.html
http://developer.android.com/reference/android/Manifest.permission.html

5. Basic Processing use

What can we do with Processing for Android:

• Single activity/ single view applications with no layouts!

• 2D and 3D (GPU-accelerated) graphics

• Multitouch and keyboard input

• Extensible with libraries.

• Lots of useful information in the wiki:

http://wiki.processing.org/w/Android

• The forum is also useful site to post questions and answers:

http://forum.processing.org/android-processing

Functions and Parameters

size(), point(), line(), Triangle(),

quad(), rect(), ellipse(), arc(), vertex()

5.1 Drawing of 2D shapes and use of color

Color

Color(), Colormode(), fill(), stroke(), Background()

http://processing.org/learning/basics/radialgradient.html

5.1 Drawing of 2D shapes and use of color

5.1 Drawing of 2D shapes and use of color

0(black) – 255(white)

Grayscale

5.1 Drawing of 2D shapes and use of color

color(gray)
color(gray, alpha)
color(value1, value2, value3)
color(value1, value2, value3, alpha) color(hex)
color(hex, alpha)

5.1 Drawing of 2D shapes and use of color

Color

fill(gray), fill(gray, alpha), fill(value1, value2, value3),

fill(value1, value2, value3, alpha) fill(color),

fill(color, alpha), fill(hex) fill(hex, alpha)

5.1 Drawing of 2D shapes and use of color

void setup() {
println(“Setup: Start");
}
void draw() {
println("I’m running");
}
When this code is run, the
following is written to the
Console:
Setup: Start
I’m running
I’m running
I’m running
...

5.2 Animation and motion

Called once when the program is

started. Used to define initial enviroment

properties such as screen size,

background color, loading images, etc.

before the draw() begins executing.

Variables declared within setup() are not

accessible within other functions,

including draw(). There can only be one

setup() function for each program and it

should not be called again after it's

initial execution.

setup()

Called directly after setup() and

continuously executes the lines of code

contained inside its block until the

program is stopped or noLoop() is called.

draw()

int x=0;

void setup() {

size(500,500);

stroke(0);

smooth();

frameRate(150); //speed

}

void draw() {

x= x+1;

if (x > 1500) {

x=0;

}

background(255);

strokeWeight(x/4);

fill(255,0,0);

ellipse(x, height/2, x+100,

x+100);

}

5.2 Animation and motion

PImage()
PImage(width, height)
PImage(width, height, format)
PImage(img)

5.3 Media (Images and Fonts)

PImage img1;

PImage img2;

void setup() {

size(480, 180);

img1 = loadImage("image1.jpg");

img2 = loadImage("image2.JPG");

}

void draw() {

background(0);

image(img1,-150, 0);

image(img1, 170, 0, 270, 180);

image(img2, 350, 0, 500, 180);

}

Sets the current font. The font

must be loaded with

loadFont() before it can be

used. This font will be used

in all subsequent calls to the

text() function. If no size

parameter is input, the font

will appear at its original size

(the size it was created at

with the "Create Font..." tool)

until it is changed with

textSize().

5.3 Media (Images and Fonts)

size(200,100);

background(0);

PFont font;

// The font must be located in the sketch's

// "data" directory to load successfully

font = loadFont("Arial-Black-48.vlw");

textFont(font, 47);

text("Hello!", 10, height/2);

textSize(14);

text("Hello!", 10, 70);

5.3 Media (Images and Fonts)

PFont

loadFont()

textFont()

text(data, x, y) text(data, x, y, z)

text(stringdata, x, y, width, height)

text(stringdata, x, y, width, height, z)

//Click on the window to give it

//focus and press the 'B' key

void draw() {

if(keyPressed) {

if (key == 'b' || key == 'B') {

fill(0);

}

} else {

fill(255);

}

rect(25, 25, 50, 50);

}

5.4 Interaction (keyboard, touchscreen, multitouch handling)

key

keyCode

keyPressed()

keyReleased()

Keyboard

void draw() {

if (keyPressed == true)

{

fill(0);

} else {

fill(255);

}

rect(25, 25, 50, 50);

}

key

keyPressed()

The boolean system variable

keyPressed is true if any key is

pressed and false if no keys are

pressed.

The system variable key always

contains the value of the most recent

key on the keyboard that was used

(either pressed or released).

5.4 Interaction (keyboard, touchscreen, multitouch handling)

mouseX

mouseY

mousePressed()

mouseReleased()

mouseMoved()

mouseDragged()

Touchscreen

The simplest way to handle

multitouch in Processing is by

overloading the

PApplet.surfaceTouchEvent

(MotionEvent event) method:

5.4 Interaction (keyboard, touchscreen, multitouch handling)

Another way is to use the code

from the Android Multitouch

Controller:

http://code.google.com/p/android

-multitouch-controller/

Multitouch

handling

import android.view.MotionEvent;

...

boolean surfaceTouchEvent(MotionEvent event) {

switch (event.getAction() & MotionEvent.ACTION_MASK) {

case MotionEvent.ACTION_POINTER_DOWN:

// User is pressing down another finger.

break;

case MotionEvent.ACTION_POINTER_UP:

// User is released one of the fingers.

break;

case MotionEvent.ACTION_MOVE:

// User is moving fingers around.

// We can calculate the distance

// between the first two fingers, for example:

float x = event.getX(0) - event.getX(1);

float y = event.getY(0) - event.getY(1);

float d = sqrt(x * x + y * y);

break;

}

}

return super.surfaceTouchEvent(event);

}

6. Extending Processing

This part will be updated during the course.

PART II:

Fast 3D Graphics

in Processing for

Android

3D drawing in Android is handled by the GPU (Graphic

Processing Unit) of the device.

The most direct way to program 3D graphics on Android is by

means of OpenGL ES.

OpenGL ES is a cross-platform API for programming 2D and 3D

graphics on embedded devices (consoles, phones, appliances,

etc).

OpenGL ES consists in a subset of OpenGL.

http://developer.android.com/guide/topics/graphics/opengl.html

http://www.khronos.org/opengles/

OpenGL ES

7. OpenGL and Processing

OpenGL ES is the 3D API for other platforms, such as Nokia and iPhone:

The graphics pipeline is the sequence of steps in the GPU from the data

(coordinates, textures, etc) provided through the OpenGL ES API to the final image

on the screen (or Frame Buffer)

The graphics pipeline on the GPU

Relationship between OpenGL and OpenGL ES

http://wiki.maemo.org/OpenGL-ES
http://wiki.maemo.org/OpenGL-ES
http://wiki.maemo.org/OpenGL-ES
http://wiki.maemo.org/OpenGL-ES

The main GPUs manufacturers for

mobile devices are Qualcomm,

PowerVR and NVidia.

Qualcomm Adreno

PowerVR SGX

NVidia Tegra

Mobile GPUs

Useful websites for benchmark information about mobile GPUs:

http://smartphonebenchmarks.com/

http://www.glbenchmark.com/latest_results.jsp?

Comparison of current mobile GPUs

Medium performance High performance

Qualcomm Adreno 200 (Nexus 1, HTC
Evo, Desire)

205 (Desire HD)

PowerVR SGX SGX 530 (Droid, Droid
2, DroidX)

SGX 540 (Galaxy S,
Vibrant, Captivate)

Nvidia Tegra Tegra 250

http://smartphonebenchmarks.com/
http://smartphonebenchmarks.com/
http://www.glbenchmark.com/latest_results.jsp?
http://www.glbenchmark.com/latest_results.jsp?

Hardware requirements for 3D in Processing for Android

1. In principle, any GPU that supports OpenGL ES 1.1

2. GPUs such as the Adreno 200 or PowerVR SVG 540/530 are

recommended.

3. Older GPUs found on devices such as the G1 might work,

but the performance is limited.

4. As a general requirement for Processing, Android 2.1.

However, certain OpenGL features were missing in 2.1, so

froyo (2.2) is needed to take full advantage of the hardware.

The A3D renderer

1. In Processing for Android there is no need to use OpenGL ES

directly (although it is possible).

2. The drawing API in Processing uses OpenGL internally when

selecting the A3D (Android 3D) renderer.

3. The renderer in Processing is the module that executes all the

drawing commands.

4. During the first part of this workshop we used the A2D renderer,

which only supports 2D drawing.

5. The renderer can be specified when setting the resolution of the

output screen with the size() command:

size(width, height, renderer)

where renderer = A2D or A3D

6. If no renderer is specified, then A2D is used by default.

Offscreen drawing

We can create an offscreen A3D surface by using the createGraphics() method:

PGraphicsAndroid3D pg;

void setup() {

size(480, 800, A3D);

pg = createGraphics(300, 300, A3D);

...

}

The offscreen drawing can be later used as an image to texture an object or

to combine with other layers. We will see more of this at the end.

void draw() {

pg.beginDraw();

pg.rect(100, 100, 50, 40);

pg.endDraw();

...

cube.setTexture(pg.getOffscreenImage());

...

}

1. The coordinate system in Processing is defined with the X axis

running from left to right, Y axis from top to bottom and negative

Z pointing away from the screen.

2. In particular, the origin is at the upper left corner of the screen.

3. Geometrical transformations (translations, rotations and scalings)

are applied to the entire coordinate system.

8. Geometrical transformations

Translations

void setup() {

size(240, 400, A3D);

stroke(255, 150);

}

void draw() {

background(0);

translate(50, 50, 0);

noStroke();

fill(255, 200);

rect(60, 0, 100, 100);

}

The translate(dx, dy, dz) function displaces

the coordinate system by the specified

amount on each axis.

Rotations

Rotations have always a rotation axis that

passes through the origin of the coordinate

system. This axis could be the X, Y, Z axis, or

an arbitrary vector:

rotateX(angle), rotateY(angle),

rotateZ(angle), rotate(angle, vx, vy,

vz)

void setup() {

size(240, 400, A3D);

stroke(255, 150);

}

void draw() {

background(0);

rotateZ(PI / 4);

noStroke();

fill(255, 200);

rect(60, 0, 100, 100);

}

Scaling

void setup() {

size(240, 400, A3D);

stroke(255, 150);

}

void draw() {

background(0);

scale(1.5, 3.0, 1.0);

noStroke();

fill(255, 200);

rect(60, 0, 60, 60);

}

Scaling can be uniform (same scale factor on

each axis) or not, since the scale(sx, sy, sz)

function allows to specify different factors

along each direction.

Just a couple of important points about

geometrical transformations...

void setup() {

size(240, 400, A3D);

stroke(255, 150);

}

void draw() {

background(0);

translate(50, 50, 0);

rotateZ(PI / 4);

noStroke();

fill(255, 200);

rect(60, 0, 60, 60);

}

1. By combining translate() with rotate(), the

rotations can be applied around any

desired point.

2. The order of the transformations is

important

The transformation stack

void setup(){

size(240, 400, A3D);

}

void draw(){

background(0);

translate(width/2, height/2);

rotateY(frameCount*PI/60);

translate(-50, -50);

fill(255, 0, 0);

box(100, 100, 100);

translate(50, -50);

fill(255, 255, 0);

box(100, 100, 100);

translate(-50, 50);

fill(0, 0, 255);

box(100, 100, 100);

translate(50, 50);

fill(0, 255, 0);

box(100, 100, 100);

}

1. The transformation stack we have in the 2D mode is also available in A3D

through the functions pushMatrix() and popMatrix().

2. All the geometric transformations issued between two consecutive calls to

pushMatrix() and popMatrix() will not affect the objects drawn outside.

void setup(){

size(240, 400, A3D);

}

void draw(){

background(0);

translate(width/2, height/2);

rotateY(frameCount*PI/60);

pushMatrix();

translate(-50, -50);

fill(255, 0, 0);

box(100, 100, 100);

popMatrix();

pushMatrix();

translate(50, -50);

fill(255, 255, 0);

box(100, 100, 100);

popMatrix();

pushMatrix();

translate(50, 50);

fill(0, 0, 255);

box(100, 100, 100);

popMatrix();

pushMatrix();

translate(-50, 50);

fill(0, 255, 0);

box(100, 100, 100);

popMatrix();

}

1. Configuring the view of the scene in A3D requires

setting the camera location and the viewing volume.

2. This can be compared with setting a physical camera

in order to take a picture:

(image from the OpenGL Red Book, first edition)

camera(eyeX, eyeY, eyeZ,

centerX, centerY, centerZ,

upX, upY, upZ)

perspective(fov, aspect, zNear, zFar)

ortho(left, right, bottom, top, near, far)

9. Camera and perspective

void setup() {

size(240, 400, A3D);

fill(204);

}

void draw() {

lights();

background(0);

camera(30.0, mouseY, 220.0,

0.0, 0.0, 0.0,

0.0, 1.0, 0.0);

noStroke();

box(90);

stroke(255);

line(-100, 0, 0, 100, 0, 0);

line(0, -100, 0, 0, 100, 0);

line(0, 0, -100, 0, 0, 100);

}

Camera placement

1. The camera placement is specified by the eye position, the center of the

scene and which axis is facing upwards:camera(eyeX, eyeY, eyeZ, centerX,

centerY, centerZ, upX, upY, upZ)

2. If camera() is not called, A3D automatically does it with the following

values: width/2.0, height/2.0, (height/2.0) / tan(PI*60.0 / 360.0),

width/2.0, height/2.0, 0, 0, 1, 0

The viewing volume is a truncated pyramid, and the convergence of the lines

towards the eye point create a perspective projection where objects located

farther away from the eye appear smaller.

perspective(fov, aspect, zNear, zFar)

perspective(PI/3.0, width/height, cameraZ/10.0, cameraZ*10.0) where cameraZ is

((height/2.0) / tan(PI*60.0/360.0)) (default values)

Perspective view

ortho(left, right, bottom, top, near, far)

ortho(0, width, 0, height, -10, 10) (default)

In this case the viewing volume is a parallelepiped. All objects with the same

dimension appear the same size, regardless of whether they are near or far

from the camera.

Orthographic view

void setup() {

size(240, 400, A3D);

noStroke();

fill(204);

}

void draw() {

background(0);

lights();

if(mousePressed) {

float fov = PI/3.0;

float cameraZ = (height/2.0) / tan(PI * fov / 360.0);

perspective(fov, float(width)/float(height),

cameraZ/2.0, cameraZ*2.0);

} else {

ortho(-width/2, width/2, -height/2, height/2, -10, 10);

}

translate(width/2, height/2, 0);

rotateX(-PI/6);

rotateY(PI/3);

box(160);

}

A3D provides some functions for drawing predefined 3D primitives:

sphere(r), box(w, h, d)

void setup() {

size(240, 400, A3D);

stroke(0);

}

void draw() {

background(0);

translate(width/2,height/2,0);

fill(200, 200);

pushMatrix();

rotateY(frameCount*PI/185);

box(150, 150, 150);

popMatrix();

fill(200, 40, 100, 200);

pushMatrix();

rotateX(-frameCount*PI/200);

sphere(50);

popMatrix();

}

10. Creating 3D objects

beginShape()/endShape()

1. The beginShape()/endShape() functions allow us to create complex objects by

specifying the vertices and their connectivity (and optionally the normals and

textures coordinates for each vertex)

2. This functionality is already present in A2D, with the difference that in A3D we

can specify vertices with z coordinates.

beginShape();

vertex(30, 20, 0);

vertex(85, 20, 0);

vertex(85, 75, 0);

vertex(30, 75, 0);

endShape(CLOSE);

beginShape(TRIANGLES);

vertex(30, 75, 0);

vertex(40, 20, 0);

vertex(50, 75, 0);

vertex(60, 20, 0);

vertex(70, 75, 0);

vertex(80, 20, 0);

endShape();

Closed polygon

Individual triangles

beginShape(TRIANGLE_STRIP);

vertex(30, 75, 0);

vertex(40, 20, 0);

vertex(50, 75, 0);

vertex(60, 20, 0);

vertex(70, 75, 0);

vertex(80, 20, 0);

vertex(90, 75, 0);

endShape();

beginShape(QUADS);

vertex(30, 20, 0);

vertex(30, 75, 0);

vertex(50, 75, 0);

vertex(50, 20, 0);

vertex(65, 20, 0);

vertex(65, 75, 0);

vertex(85, 75, 0);

vertex(85, 20, 0);

endShape();

Triangle strip

Individual quads

Texturing is an important technique in computer graphics consisting in using

an image to “wrap” a 3D object in order to simulate a specific

material, realistic "skin", illumination effects, etc.

Texturing

Basic texture mapping:

Adapted from wikipedia.org, UV mapping:

http://en.wikipedia.org/wiki/UV_mapping

Texture mapping becomes a very complex problem

when we need to texture complicated tridimensional

shapes (organic forms).

Finding the correct mapping from 2D image to 3D shape

requires mathematical techniques that takes into account

edges, folds, etc.

PImage img;

void setup() {

size(240, 240, A3D);

img = loadImage("beach.jpg");

textureMode(NORMAL);

}

void draw() {

background(0);

beginShape(QUADS);

texture(img);

vertex(0, 0, 0, 0, 0);

vertex(width, 0, 0, 1, 0);

vertex(width, height, 0, 1, 1);

vertex(0, height, 0, 0, 1);

endShape();

}

The texture mode can be

NORMAL or IMAGE

Depending on the texture mode, we use

normalized UV values or relative to the

image resolution.

Objects created with beginShape()/endShape() can be textured using any

image loaded into Processing with the loadImage() function or

created procedurally by manipulating the pixels individually.

Simple shape texturing

PImage img1, img2;

void setup() {

size(240, 240, A3D);

img1 = loadImage("beach.jpg");

img2 = loadImage("peebles.jpg");

textureMode(NORMAL);

noStroke();

}

void draw() {

background(0);

beginShape(TRIANGLES);

texture(img1);

vertex(0, 0, 0, 0, 0);

vertex(width, 0, 0, 1, 0);

vertex(0, height, 0, 0, 1);

texture(img2);

vertex(width, 0, 0, 1, 0);

vertex(width, height, 0, 1, 1);

vertex(0, height, 0, 0, 1);

endShape();

}

beginShape/endShape in A3D

supports setting more than one texture

for different parts of the shape:

Ambient Diffuse Specular

Some more good resources about lights in OpenGL:

http://jerome.jouvie.free.fr/OpenGl/Lessons/Lesson6.php

http://jerome.jouvie.free.fr/OpenGl/Tutorials/Tutorial12.php - Tutorial15.php

http://www.sjbaker.org/steve/omniv/opengl_lighting.html

1. A3D offers a local illumination model based on OpenGL’s model.

2. It is a simple real-time illumination model, where each light source has 4

components: ambient + diffuse + specular + emissive = total

3. This model doesn't allow the creation of shadows

4. We can define up to 8 light sources.

5. Proper lighting calculations require to specify the normals of an object

Lighting

http://jerome.jouvie.free.fr/OpenGl/Lessons/Lesson6.php
http://jerome.jouvie.free.fr/OpenGl/Lessons/Lesson6.php

From iPhone 3D programming, by Philip Rideout.

http://iphone-3d-programming.labs.oreilly.com/ch04.html

In diffuse lighting, the angle between the normal of the

object and the direction to the light source determines

the intensity of the illumination:

http://jerome.jouvie.free.fr/OpenGl/Lessons/Lesson6.php

http://jerome.jouvie.free.fr/OpenGl/Lessons/Lesson6.php
http://jerome.jouvie.free.fr/OpenGl/Lessons/Lesson6.php

Ambient: Ambient light doesn't come from a specific direction,

the rays have light have bounced around so much that objects

are evenly lit from all sides. Ambient lights are almost always

used in combination with other types of lights.

ambientLight(v1, v2, v3, x, y, z)

v1, v2, v3: rgb color of the light

x, y, z position:

Directional: Directional light comes from one direction and is

stronger when hitting a surface squarely and weaker if it hits at a

a gentle angle. After hitting a surface, a directional lights scatters

in all directions.

directionalLight(v1, v2, v3, nx, ny, nz)

v1, v2, v3: rgb color of the light

nx, ny, and nz the direction the light is facing.

Light types in A3D

Point: Point light irradiates from a specific position.

pointLight(v1, v2, v3, x, y, z)

v1, v2, v3: rgb color of the light

x, y, z position:

Spot: A spot light emits lights into an emission cone by

restricting the emission area of the light source.

spotLight(v1, v2, v3, x, y, z, nx, ny, nz, angle, concentration)

v1, v2, v3: rgb color of the light

x, y, z position:

nx, ny, nz specify the direction or light

angle float: angle the spotlight cone

concentration: exponent determining the center bias of the cone

http://jerome.jouvie.free.fr/OpenGl/Lessons/Lesson6.php

Normals: each vertex needs to have a normal defined so the light

calculations can be performed correctly

Polygon winding: The ordering of the

vertices that define a face determine

which side is inside and which one is

outside. Processing uses CCW

ordering of the vertices, and the

normals we provide to it must be

consistent with this.

PVector a = PVector.sub(v2, v1);

PVector b = PVector.sub(v3, v1);

PVector n = a.cross(b);

normal(n.x, n.y, n.z);

vertex(v1.x, v1.y, v1.z);

vertex(v2.x, v2.y, v2.z);

vertex(v3.x, v3.y, v3.z);

Text in A3D works exactly the same as in A2D:

1. load/create fonts with loadFont/createFont

2. set current font with textFont

3. write text using the text() function

PFont fontA;

void setup() {

size(240, 400, A3D);

background(102);

String[] fonts = PFont.list();

fontA = createFont(fonts[0], 32);

textFont(fontA, 32);

}

void draw() {

fill(0);

text("An", 10, 60);

fill(51);

text("droid", 10, 95);

fill(204);

text("in", 10, 130);

fill(255);

text("A3D", 10, 165);

}

11. 3D Text

1. The main addition in A3D is that text can be manipulated in

three dimensions.

2. Each string of text we print to the screen with text() is contained

in a rectangle that we can rotate, translate, scale, etc.

3. The rendering of text is also very efficient because is

accelerated by the GPU (A3D internally uses OpenGL textures

to store the font characters)

fill(0);

pushMatrix();

translate(rPos,10+25);

char k;

for(int i = 0;i < buff.length(); i++) {

k = buff.charAt(i);

translate(-textWidth(k),0);

rotateY(-textWidth(k)/70.0);

rotateX(textWidth(k)/70.0);

scale(1.1);

text(k,0,0);

}

popMatrix();

PFont font;

char[] sentence = { 'S', 'p', 'A' , 'O', '5', 'Q',

'S', 'p', 'A' , 'O', '5', 'Q',

'S', 'p', 'A' , 'O', '5', 'Q',

'S', 'p', 'A' , 'O', '5', 'Q' };

void setup() {

size(240, 400, P3D);

font = loadFont("Ziggurat-HTF-Black-32.vlw");

textFont(font, 32);

}

void draw() {

background(0);

translate(width/2, height/2, 0);

for (int i = 0; i < 24; i++) {

rotateY(TWO_PI / 24 + frameCount * PI/5000);

pushMatrix();

translate(100, 0, 0);

//box(10, 50, 10);

text(sentence[i], 0, 0);

popMatrix();

}

}

1. Normally, the data that defines a 3D object (vertices, colors,

normals, texture coordinates) are sent to the GPU at every frame.

2. The current GPUs in mobile devices have limited bandwidth, so

data transfers can be slow.

3. If the geometry doesn’t change (often) we can use Vertex

Buffer Objects.

4. A Vertex Buffer Object is a piece of GPU memory where we

can upload the data defining an object (vertices, colors, etc.)

5. The upload (slow) occurs only once, and once the VBO is stored

in GPU memory, we can draw it without uploading it again.

6. This is similar to the concept of Textures (upload once, use

multiple times).

Vertex Buffer Objects

12 Models: the Pshape3D class

For a good tutorial about VBOs, see this page:

http://www.songho.ca/opengl/gl_vbo.html

The PShape3D class in A3D encapsulates VBOs

1. The class Pshape3D in A3D encapsulates a VBO and provides a simple way to

create and handle VBO data, including updates, data fetches, texturing,

loading from OBJ files, etc.

2. PShape3D has to be created with the total number of vertices know beforehand.

Resizing is possible, but slow.

3. How vertices are interpreted depends on the geometry type specified at

creation (POINT, TRIANGLES, etc), in a similar way to beginShape()/endShape()

4. Vertices in a PShape3D can be divided in groups, to facilitate normal and

color assignment, texturing and creation of complex shapes with multiple

geometry types (line, triangles, etc).

Manual creation of Pshape3D models

1. A PShape3D can be created by specifying each vertex and

associated data (normal, color, etc) manually.

2. Remember that the normal specification must be consistent with

the CCW vertex ordering.

cube = createShape(36, TRIANGLES);

cube.beginUpdate(VERTICES);

cube.setVertex(0, -100, +100, -100);

cube.setVertex(1, -100, -100, -100);

...

cube.endUpdate();

cube.beginUpdate(COLORS);

cube.setVertex(0, color(200, 50, 50, 150));

cube.setVertex(1, color(200, 50, 50, 150));

...

cube.endUpdate();

cube.beginUpdate(NORMALS);

cube.setVertex(0, 0, 0, -1);

cube.setVertex(1, 0, 0, -1);

...

cube.endUpdate();

Creation Drawing

translate(width/2, height/2, 0);

shape(cube);

1. A PShape3D can be textured with one ore more images.

2. The vertices can be organized in groups, which allows to assign a different

texture to each group.

3. Groups also facilitate the assignment of colors and normals.

cube.beginUpdate(VERTICES);
cube.setGroup(0);
cube.setVertex(0, -100, +100, -100);
cube.setVertex(1, -100, -100, -100);
...
cube.setGroup(1);
cube.setVertex(6, +100, -100, +100);
cube.setVertex(7, +100, +100, +100);
...
cube.endUpdate();

cube.setGroupColor(0, color(200, 50, 50, 150));
cube.setGroupColor(1, color(200, 50, 50, 150));
...

cube.setGroupNormal(0, 0, 0, -1);
cube.setGroupNormal(1, +1, 0, 0);
...
cube.setGroupTexture(0, face0);
cube.setGroupTexture(1, face1);
...

PShape object;

float rotX;

float rotY;

void setup() {

size(480, 800, A3D);

noStroke();

object = loadShape("rose+vase.obj");

}

void draw() {

background(0);

ambient(250, 250, 250);

pointLight(255, 255, 255, 0, 0, 200);

translate(width/2, height/2, 400);

rotateX(rotY);

rotateY(rotX);

shape(object);

}

OBJ loading

1. The OBJ format is a text-based data format to store 3D geometries. There is an

associated MTL format for materials definitions.

2. It is supported by many tools for 3D modeling (Blender, Google Sketchup, Maya, 3D

Studio). For more info: http://en.wikipedia.org/wiki/Obj

3. A3D supports loading OBJ files into PShape3D objects with the loadShape() function.

4. Depending the extension of the file passed to loadShape (.svg or .obj) Processing will

attempt to interpret the file as either SVG or OBJ.

5. The styles active at the time of loading the shape are used to generate the geometry.

PShape bot;

PShape3D bot3D;

public void setup() {

size(480, 800, A3D);

bot = loadShape("bot.svg");

bot3D = createShape(bot);

}

public void draw() {

background(255);

shape(bot3D, mouseX, mouseY, 100, 100);

}

Copying SVG shapes into PShape3D

Once we load an SVG file into a PShapeSVG object, we can copy

into a PShape3D for increased performance:

Shape recording

1. Shape recording into a PShape3D object is a feature that can greatly increase

the performance of sketches that use complex geometries.

2. The basic idea of shape recording is to save the result of standard Processing

drawing calls into a Pshape3D object.

3. There are two ways of using shape recording: one is saving a single shape

with beginShapeRecorder/endShapeRecorder, and the second allows saving

multiple shapes with beginShapesRecorder/endShapesRecorder

PShape recShape;

void setup() {

size(480, 800, A3D);

beginShapeRecorder(QUADS);

vertex(50, 50);

vertex(width/2, 50);

vertex(width/2, height/2);

vertex(50, height/2);

recShape = endShapeRecorder();

...

}

void draw() {

...

shape(recShape3D);

...

}

objects recShape;

void setup() {

size(480, 800, A3D);

beginShapesRecorder();

box(1, 1, 1);

rect(0, 0, 1, 1);

...

objects = endShapesRecorder();

...

}

void draw() {

...

shape(objects);

...

}

The performance gains of using shape recording are quite substantial.

It usually increases the rendering framerate by 100% or more.

Textured sphere Birds flock

Without shape recording: 19fps

With shape recording: 55fps

Without shape recording: 7fps

With shape recording: 18fps

Particle systems

PShape3D allows to create models with the POINT_SPRITES geometry type.

With this type, each vertex is treated as a textured point sprite.

At least one texture must be attached to the model, in order to texture the sprites.

More than sprite texture can be attached, by dividing the vertices in groups.

The position and color of the vertices can be updated in the draw loop in order to

simulate motion (we have to create the shape as DYNAMIC).

particles = createShape(1000, POINT_SPRITES, DYNAMIC);

particles.beginUpdate(VERTICES);

for (int i =0; i < particles.getNumVertices(); i++) {

float x = random(-30, 30);

float y = random(-30, 30);

float z = random(-30, 30);

particles.setVertex(i, x, y, z);

}

particles.endUpdate();

sprite = loadImage("particle.png");

particles.setTexture(sprite);

particles.beginUpdate(VERTICES);

for (int i =0; i < particles.getNumVertices(); i++) {

float[] p = particles.getVertex(i);

p[0] += random(-1, 1);

p[1] += random(-1, 1);

p[2] += random(-1, 1);

particles.setVertex(i, p);

}

particles.endUpdate();

Creation/initialization

Dynamic update

Wrapping up...

Lets look an example where we do:

1. offscreen rendering to texture

2. particle system (rendered to offscreen surface)

3. dynamic texturing of a 3D shape using the result

of the offscreen drawing

Very good Android tutorial: http://www.vogella.de/articles/Android/article.html

Official google resources: http://developer.android.com/index.html

SDK: http://developer.android.com/sdk/index.html

Guide: http://developer.android.com/guide/index.html

OpenGL: http://developer.android.com/guide/topics/graphics/opengl.html

Mailing list: http://groups.google.com/group/android-developers

Developers forums: http://www.anddev.org/

Book: http://andbook.anddev.org/

Cyanogenmod project: http://www.cyanogenmod.com/

GLES benchmarks: http://www.glbenchmark.com/result.jsp

Min3D (framework 3D): http://code.google.com/p/min3d/

Developer’s devices: http://www.hardkernel.com/

AppInventor: http://www.appinventor.org/

Processing resources: http://processing.org/

Processing.Android forum: http://forum.processing.org/android-processing

Processing.Android forum: http://wiki.processing.org/w/Android

Links

http://www.vogella.de/articles/Android/article.html
http://www.vogella.de/articles/Android/article.html
http://developer.android.com/index.html
http://developer.android.com/index.html
http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html
http://developer.android.com/guide/index.html
http://developer.android.com/guide/index.html
http://developer.android.com/guide/topics/graphics/opengl.html
http://developer.android.com/guide/topics/graphics/opengl.html
http://groups.google.com/group/android-developers
http://groups.google.com/group/android-developers
http://groups.google.com/group/android-developers
http://groups.google.com/group/android-developers
http://www.anddev.org/
http://www.anddev.org/
http://andbook.anddev.org/
http://andbook.anddev.org/
http://www.cyanogenmod.com/
http://www.cyanogenmod.com/
http://www.glbenchmark.com/result.jsp
http://www.glbenchmark.com/result.jsp
http://code.google.com/p/min3d/
http://code.google.com/p/min3d/
http://www.hardkernel.com/
http://www.hardkernel.com/
http://www.appinventor.org/
http://www.appinventor.org/
http://processing.org/
http://processing.org/
http://forum.processing.org/android-processing
http://forum.processing.org/android-processing
http://forum.processing.org/android-processing
http://forum.processing.org/android-processing
http://wiki.processing.org/w/Android
http://wiki.processing.org/w/Android

Books Hello, Android: Introducing Google's Mobile Development Platform

Ed Burnette

Pragmatic Bookshelf; 3 edition (July 20, 2010)

Professional Android 2 Application Development

Rato Meier

Wrox; 1 edition (March 1, 2010)

Pro Android 2

Sayed Hashimi

Getting Started with Processing

Casey Reas and Ben Fry.

Published June 2010, O'Reilly Media.

Processing: A Programming Handbook for Visual Designers and Artists

Casey Reas and Ben Fry

Published August 2007, MIT Pres

