
SIGGRAPHASIA 2010

Introduction to Using RenderMan
Course Notes

Saturday 18 December
Full Day

Instructors

Malcolm Kesson, Savannah College of Art and Design

Hosuk Chang, Blizzard Entertainment

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1900520.1900541&domain=pdf&date_stamp=2010-12-15

Introduction to Using RenderMan
Course Summary

Saturday, 18 December, Full Day
Level: Beginner

The course will provide an overview of

The structure of RenderMan scene descriptions.
The implementation and application of custom shaders.
The use of RenderMan by the Cinematics Team of Blizzard Entertainment.

The full-day course is an intensive, hands-on practical introduction to the
RenderMan system and the use of Pixar's 'prman' and DNA's '3delight' renderers,
both of which are widely used in animation and digital effects studios.

In the first part of the course attendees will gain sufficient familiarity with
RenderMan's scene description protocol to enable them to edit and manipulate RIB
files. RIB files enable modeling and animation applications to pass information about
3D scenes to RenderMan compliant renderers such as 'prman' and '3delight'.

The second part of the course introduces the use of the RenderMan Shading
Language (RSL). Attendees are not expected to have prior programming
experience. The intention of this part of the course is to provide an overview of the
shading language to the point where attendees will be confident to independently
explore the creative potential of RSL.

The course will be concluded with a detailed presentation of the advanced
RenderMan techniques used by the Cinematics Team of Blizzard Entertainment for
the next release of World of Warcraft (winter 2010).

Prerequisites
None

Intended Audience
This course is ideal for artists and designers who have prior experience using a 3D
modeling and animation application but who wish to investigate the features of a
graphics system that has become the de-facto standard of the feature film industry.

Instructors
Malcolm A. Kesson
Hosuk Chang

Page 1

Introduction to Using RenderMan
Course Schedule

Many thanks to

 Pixar

 Blizzard Entertainment

 The Savannah College of Art and Design

Session 1 Malcolm Kesson

9.00 - 10.45

Rib Exercises

RenderMan rib files

 Options, Attributes, camera & world blocks

 Camera transformations & geometry

 Archived geometry (pre-baked ribs)

 AOVs - many outputs from a single render

10.45 - 11.00 Break

Session 2 Malcolm Kesson

11.00 - 12.45

RSL Exercises

 Stereo rendering

 Procedural primitives - creating geometry at render-time

RenderMan Shading Language

 Language overview

 Patterns (st space)

12.45 - 14.15 Lunch

Session 3 Malcolm Kesson

14.15 - 16.00 RenderMan Shading Language

 Point-based occlusion

 Sub-surface scattering

16.00 - 16.15 Break

Session 4 Hosuk Chang

16.15 - 18.00 RenderMan in Production

 Hosuk will explain the advanced RenderMan techniques used

 for Blizzard Cinematics.

Instructor Bios

Malcom Kesson teaches graphics programming at the Savannah College of Art and Design. He has

presented RenderMan workshops at all five Asia GRAPHITE conferences as well as SiggraphAsia 2008 and

2009.

Hosuk Chang is an effects technical director in the Cinematic Division of Blizzard Entertainment. He is

responsible for the creation of elements such as smoke, water, dust and a variety of magical effects in support

of the cinematics of games such as World of Warcraft, Star Craft and Diablo. Hosuk also contributes to the

on-going development of Blizzard's cinematic FX pipeline.

Page 2

Introduction to Using RenderMan
Preface

RenderMan is the dominant rendering technology used throughout the feature film
industry. For many years the only publication available to CG artists who wished to learn
how to use Renderman was "The RenderMan Companion" by Steve Upstill. Even after
19 years it is still a great source of information. However, the "Companion" focused on
the use of the 'C' programming language to write RenderMan "programs" and as such it
served the needs of programmers rather than CG artists. Perhaps as a consequence of
it being seen as just another kind of programming, RenderMan acquired a slew of
misconceptions about its role as a creative medium for CG artists.

The Siggraph "Advanced RenderMan" courses taught by Tony Apodaca and Larry Gritz
both popularized the subject as well as catered to specialists already working in feature
film studios. Their book, "Advanced RenderMan" published in 2000, greatly helped to
make Pixar's technology accessible to CG artists. Several excellent publications now
provide insights into almost every aspect of RenderMan.

Adoption of the RenderMan standard has led to the development of several compliant
renderers. Some, like 'prman' by Pixar and '3delight' by DNA Research are commercial
products. Other RenderMan compliant renderers have been developed as open-source
projects.

Despite the wealth of information that is now available, this one day course offered at
SiggraphAsia 2010 provides an invaluable introduction to those who wish to make a
quick start on their exploration of RenderMan.

Malcolm Kesson
Savannah, Georgia.

Page 3

Introduction to Using RenderMan
Recommended Texts

The RenderMan Companion
A Programmers Guide to Realistic
Computer Graphics
Steven Upstill
Addison-Wesley
ISBN: 0201508680
1989

Essential RenderMan Fast
Ian Stephenson
Springer
ISBN-13: 9781852336089
2003

Rendering for Beginners
Saty Raghavachary
Focal Press
ISBN-13: 978-0-240-51935-7
2004

Advanced RenderMan
Anthony Apodaca and Larry Gritz
Morgan Kaufmann
ISBN: 978-1-55860-618-0
2000

Texturing & Modeling
A Procedural Approach
David Ebert, F. Kenton Musgrave,
Darwyn Peachey, Ken Perlin & Steven Worley
Morgan Kaufmann
ISBN: 978-1-55860-848-1
2003

The RenderMan Shading Guide
Rudy Cortes & Saty Raghavachary
Course Technology
ISBN-13: 978-1-59863-286-6
2007

Recommended Websites

Hosuk's Personal website at http://s204357084.onlinehome.us.
RManNotes by Steve May at http://accad.osu.edu/~smay/RManNotes.
Selected student pages at www.sfdm.scad.edu/faculty/mkesson.
CG References & Tutorials at www.fundza.com.

Page 4

Introduction to Using RenderMan
Index

1
2
3
4

6
8

11
14
19
21
26
32
34
39
44
54

59
64
66
83

105
120
123
128
131

140

Summary
Schedule
Preface
Recommended Texts

Rib - Scene Descriptions
Basic Camera
Transformations & Attributes
Camera Transformations
Coordinate Systems
Pre-baked Ribs
Secondary Images - AOVs
Stereo Rendering
Curve Basics
Procedural Primitives: Python, Tcl & C
Procedural Primitives: RiPoints
Procedural Primitives: Randomness
Procedural Primitives: Blobbies

RSL - Shading Language
Overview
What is a Surface Shader?
Writing Surface Shaders
Writing Directional Light Source Shaders
Writing Displacement Shaders
Using smoothstep
Using noise
Using cellnoise
Class Based Shaders - Shader Objects

Cutter - Text Editor
Shader Writing

Page 5

Rib
Setting up a Basic Camera

disk1.rib
setting a perspective view

Display "disk1" "framebuffer" "rgb"
Projection "perspective" "fov" 40
Format 320 240 1

WorldBegin
 Disk 3 0.25 360
WorldEnd

The purpose of this tutorial is to present a minimal renderman scene. The first two
lines show the use of the hash symbol "#" for comments. Display, Projection
and Format are rib statements that define the basic characteristics of the camera.
These statements, and others that begin each line, must be spelled exactly as
shown ie. a single word with one or more upper case letters.

Display has three parameters to specify
the name of the image,
where to put the image, and
what information the image should contain.

The parameters for Projection specify,
perspective or orthographic projection, and the
field of view measured in degrees.

The parameters for Format specify,
image width,
image height, and
the pixel aspect ratio.

WorldBegin notifies the renderer that objects comprising the 3D scene are about to
be defined. Disk is a rib statement that defines, by its three numeric parameters a
flat circular disk situated 5 units along the z axis, 0.5 units in radius and 360
degrees in circumference. Parameters must be separated by at least one space.
They may, however, be spread over several lines and have comments at the end
of each line. For example, the disk could have been specified as follows.

 Disk
 5 # units along the z axis
 0.5 # units in radius
 360 # degrees

Page 6

Finally, WorldEnd indicates the description of the scene, or world, has been
completed. This small rib file is interesting not just for what it describes but also for
what it omits. Although it does not specify the material characteristics of the disk, or
how it is lit, the renderer is able to produce an image because, in the absence of
specific information, it uses default settings.

example1.rib
setting a perspective view

Display "disk1" "framebuffer" "rgb"
Projection "perspective" "fov" 40
Format 320 240 1

Two comments about the scene.

Set the camera to give a perspective
view with a field of vision of 40
degrees and a frame size of 320 by
240 pixels.

WorldBegin Begin describing the contents of the
3D scene.

 Disk 3 0.25 360 Create a disk 3 units along the z axis
of the camera, 0.25 units in radius
and 360 degrees in circumference.

WorldEnd Conclude the description of the 3D
scene.

Page 7

Rib
Transformations & Attributes

disk2.rib
setting the world coordinate system

Display "disk2" "framebuffer" "rgb"
Projection "perspective" "fov" 40
Format 320 240 1

Translate 0 0 3 # a transformation
WorldBegin
 Color 1 0 0 # an attribute
 Disk 0 0.25 360
WorldEnd

The primary 3D coordinate system in RenderMan is the camera coordinate system.
Until the renderer reads WorldBegin the camera defines the current coordinate
system. From a users point of view, applications such as Maya and Houdini enable a
camera(s) to be moved within a fixed modeling (world) space. However, internally
these applications behave in the same way as RenderMan in the sense that the
world is defined after the characteristics of the camera have been established.
Therefore, it is the scene that is orientated with respect to a fixed, or primary, camera
coordinate system.

This tutorial explains what transformations and attributes mean in the RenderMan
specification. The Translate command is one of four transformations. The others
are Rotate, Scale and Skew. The effect of these transformations will be seen in the
next couple of examples. For now we will focus on translations. The effect of the
Translate statement is,

to create a copy of the camera coordinate system,
to move the copy 3 units along the z-axis of the camera.

When the renderer reads WorldBegin a copy of the camera coordinate system, now
moved out in front the camera, becomes the primary or current coordinate system. It
is named the "world" coordinate system. Transformations are accumulative. For
example, these two translations,

 Translate 0 0 3
 Translate 0 0 3

have exactly the same effect as a single translation ie.

 Translate 0 0 6

Page 8

The Color statement sets a RGB value. Attributes are not acculumative ie.

 Color 1 0 0
 Color 0 0 1

does not specify purple. The second Color statement makes blue the current color.
In effect, the second statement replaces or hides the first color statement. The RGB
color components must be in the range 0.0 to 1.0. Unlike Maya, geometry in
RenderMan can be colorized without the use of a material. Opacity is another
attribute that can effect the transparency of an object irrespective of an objects
"material" properties.

disk2.rib
setting the world coordinate system

Display "disk2" "framebuffer" "rgb"
Projection "perspective" "fov" 40
Format 320 240 1

Translate 0 0 3 # a transformation

Two comments about the scene.

Set the camera to give a perspective
view with a field of vision of 40
degrees and a frame size of 320 by
240 pixels.

Create a copy of the camera
coordinate system and move it 3 units
along z-axis. Note: it is the copy that
is translated NOT the camera
coordinate system - it remains fixed.

WorldBegin The copy of the coordinate system
now becomes the primary, "world", or
current coordinate system.

Page 9

 Disk 0 0.25 360 Create a disk at the origin of the
"world", 0.25 units in radius and 360
degrees in circumference.

WorldEnd Conclude the description of the 3D
scene.

Page 10

Rib
Camera Transformations

disk3.rib
applying multiple transformations

Display "disk3" "framebuffer" "rgb"
Projection "perspective" "fov" 40
Format 320 240 1

Translate 0 0 3
Rotate -40 1 0 0
Rotate -20 0 1 0
WorldBegin
 Color 1 1 0.7
 Polygon "P" [-0.5 0 -0.5 -0.5 0 0.5 0.5 0 0.5 0.5 0 -0.5]
 "st" [0 0 0 1 1 1 1 0]
 Color 1 0 0
 Disk 0 0.25 360
WorldEnd

The purpose of this rib file is to show the effect of applying additional
transformations before WorldBegin.

 Translate 0 0 3
 Rotate -40 1 0 0
 Rotate -20 0 1 0
 WorldBegin

These transformations determine how the 3D scene will be viewed by the
camera. For that reason they are know as the view or viewing
transformations. Rib files written by Maya (requires Pixar's plugin) use a single
transformation command,

 ConcatTransform [0.707 -0.331 -0.625 0.0
 0.0 0.884 -0.469 0.0
 -0.707 -0.331 -0.625 0.0
 0.0 0.0 44.822 1.0]

This statement specifies a transformation matrix of 16 values. Fortunately, the
RenderMan standard provides a more human-friendly way of setting the viewing
transformation. The Rotate statement has four parameters,

an angle measured in degrees, followed by
the xyz coordinates of the axis of rotation.

A good way of understanding the last three values of the command is to
consider the one and zero's to be switches ie.

Page 11

 Rotate -40 1 0 0
 angle on off off

Therefore, this statement specifies a rotation of -40 degrees around the x-axis.
The direction of the rotation, clockwise or anti-clockwise, is explained in the next
tutorial "Rib: Left-hand & Right-hand Coordinate Systems". For the moment, the
key points to understand about transformations are that they are,

applied in reverse order,
applied to a copy of the current coordinate system,
applied relative to the the current coordinate system.

disk3.rib
applying multiple transformations

Display "disk2" "framebuffer" "rgb"
Projection "perspective" "fov" 40
Format 320 240 1

Translate 0 0 3
Rotate -40 1 0 0
Rotate -20 0 1 0

Two comments about the scene.

Set the camera to give a
perspective view with a field of
vision of 40 degrees and a frame
size of 320 by 240 pixels.

The camera coordinate system is
the current (active) system.

The transformations are applied in
reverse order.

First, the negative rotation of 20
degrees around the y-axis is applied
to a copy of the current coordinate
system.

Translate 0 0 3
Rotate -40 1 0 0
Rotate -20 0 1 0

Next, the negative rotation of 40
degrees around the x-axis is applied
to the copy.

Page 12

Translate 0 0 3
Rotate -40 1 0 0
Rotate -20 0 1 0

Move the transformed coordinate
system 3 units along the z-axis of
the camera.

WorldBegin The copy of the coordinate system
now becomes the primary, "world",
or current coordinate system.

 Color 1 1 0.7
 Polygon "P" [-0.5 0 -0.5 -0.5 0 0.5
 0.5 0 0.5 0.5 0 -0.5]
 "st" [0 0 0 1 1 1 1 0]
 Color 1 0 0
 Disk 0 0.25 360

Make yellow the current color.
Insert a 1 x 1 polygon.

Assign the texture coordinates.
Make red the current color.
Insert the disk.

WorldEnd Conclude the description of the 3D
scene.

Page 13

Rib
Left-hand & Right-hand Coordinate Systems

disk_poly.rib
left hand renderman coordinate system
right hand world coordinate system

Display "disk_poly" "framebuffer" "rgb"
Projection "perspective" "fov" 40
Format 320 240 1

Translate 0 0 3
Rotate -40 1 0 0
Rotate -20 0 1 0
Scale 1 1 -1 # <-- Note the negative z scale
WorldBegin
 Color 1 1 0.7
 Polygon "P" [-0.5 0 -0.5 -0.5 0 0.5 0.5 0 0.5 0.5 0 -0.5]
 "st" [0 0 0 1 1 1 1 0]
 Color 1 0 0
 Disk 0 0.25 360
WorldEnd

Coordinate systems come in two flavors, left-hand ("lh") and right-hand ("rh").
As shown below, the handedness of a coodinate system determines whether a
positive rotation is clockwise or anti-clockwise. The thumb and fingers of either
the left or right hand can be used to visualize the direction a positive rotation.
For example, to decide whether a positive rotation around the x-axis of a
right-hand coordinate system is clockwise or anti-clockwise point the thumb of
the right hand along the x-axis; the "curl" of your fingers will indicate the
direction of the rotation is clock-wise.

Left-hand (RenderMan) Right-hand (Maya & Houdini)

Rib Files Written by Pixar's RMS & RAT
Unlike RenderMan, most 3D modeling applications use right-hand coordinates.

Page 14

Rib files generated by Maya, and Pixar's RenderMan Studio (RMS), apply a
negative z scaling to the viewing transformations. The scaling ensures the
coordinate system of the WorldBegin / WorldEnd block is right-handed. The
predecessor to RMS, a product from Pixar known as RenderMan Artist Tools
(RAT) also inserted a ReverseOrientation statement immediately after
WorldBegin. This was necessary because RAT, despite the use of a
right-hand world block, specified surface data (vertices of polygons etc) in
left-hand order. The ReverseOrientation ensured that surface normals were
correctly orientated. The Maya plugin for RMS, RenderMan for Maya Pro (RfM
Pro) writes surface data in right-hand order and as such the call to
ReverseOrientation is not required.

Rib Files Written by Side Effects Houdini
The "handedness" of surfaces written by Side Effects Houdini is similiar to RAT.
However, instead of using ReverseOrientation their rib files use,

 Orientation "rh"

immediately after WorldBegin to ensure that surface normals are correctly
orientated.

Rib Files Written by Cutter
Rib files generated by Cutter as well as those listed in the Fundza tutorials
conform to RMS in the sense that the world block is right-handed and vertices
are listed in right-hand order.

Rib Files and Pixar's Technical Documentation
Traditionally, example rib files listed in Pixar's documentation specify a left-hand
camera and a left-hand world block. In other words the negative z axis of the
world is "pointing" at the camera. Whereas the rib files from RMS, RAT, Houdini
and Cutter specify a right-hand world block in which the positive axis of the
world is "pointing" at the camera.

Issues with Surface Normals and Quadrics
While ReverseOrientation corrects the reversed normals in rib files written by
RAT (actually, its Maya plugin called "mtor") it has an undesired side-effect on
quardics and as such unfortunately causes them to become reversed! This is
not an issue for Maya and Houndini because their tool kit of surfaces do not
include quadrics. However, the unexpected flipping of the surface normals of
quadrics is very significant when dealing with hand-written rib files that include
the use of the ReverseOrientation statement. More information can be found
about this issue in the tutorial "RenderMan: Reverse Orientation & Quadrics".

disk_poly.rib
left hand renderman coordinate system
right hand world coordinate system

Comments about the scene.

Page 15

Display "disk_poly" "framebuffer" "rgb"
Projection "perspective" "fov" 40
Format 320 240 1

Translate 0 0 3
Rotate -40 1 0 0
Rotate -20 0 1 0
Scale 1 1 -1

Set the camera to give a
perspective view with a field of
vision of 40 degrees and a frame
size of 320 by 240 pixels.

The camera coordinate system is
the current (active) system.

The transformations are applied in
reverse order.
First, the negative z-scaling.

Translate 0 0 3
Rotate -40 1 0 0
Rotate -20 0 1 0
Scale 1 1 -1

Second, the negative rotation of 20
degrees around the y-axis is
applied.

Translate 0 0 3
Rotate -40 1 0 0
Rotate -20 0 1 0
Scale 1 1 -1

Third, the negative rotation of 40
degrees around the x-axis is
applied.

Translate 0 0 3
Rotate -40 1 0 0

Finally, the transformed coordinate

Page 16

Rotate -20 0 1 0
Scale 1 1 -1

system is moved 3 units along the
z-axis of the camera.

WorldBegin The copy of the coordinate system
now becomes the "world"
coordinate system - also refered to
as the current coordinate system.

 Color 1 1 0.7
 Polygon "P" [-0.5 0 -0.5 -0.5 0 0.5
 0.5 0 0.5 0.5 0 -0.5]
 "st" [0 0 0 1 1 1 1 0]

 Color 1 0 0
 Disk 0 0.25 360

Make yellow the current color.
Insert a 1 x 1 polygon and specify
its
'st' texture coordinates.

Make red the current color.
Insert the disk.

WorldEnd Conclude the description of the 3D
scene.

Page 17

The illustrations shown above visualize the effects of each rib statement or
group of statements. The visualizations have been made on the assumption
the camera remains in a fixed upright position. Consequently, the contents of
the 3D scene ie. the polygon and the disk specified in the world block, have
been drawn in a tilted position. As shown below, the orientation of the camera
and the world can be adjusted so that the y-axis of the world is seen in the
more familiar upright position.

Whether you imagine the world is oriented relative to a fixed camera, or the
camera is oriented relative to a fixed world is entirely up to you. What is
important are the camera transformations that establish the relative
relationship of the camera and the world.

Page 18

Rib
Pre-baked RIB's

Introduction
Before attempting to produce a pre-baked RIB (ie. an archive) with Maya it is useful
to gain an understanding of what archive files are and how they are referenced by
other rib files. This tutorial assumes you are using the Cutter text editor.

What is an archive?
An archive, or pre-baked, RIB is similiar to a "regular" file except that it does not
contain any camera statements or the statements WorldBegin & WorldEnd. Often
an archive also omits shading and lighting statements as well. Generally, archive
files only contain the data relating to the geometry of an object.

Figure 1 - original model Figure 2 - archive read 3 times

For the purpose of this tutorial a regular RIB file has been converted into an archive
as a result of removing all the text from the beginning of the RIB file down to the first
occurance of the statement TransformBegin. The "tail" of the RIB file has also had
its concluding WorldEnd statment removed. After inserting AttributeBegin at the
head and AttributeEnd at the tail of the document we have effectively created an
archive RIB file.

The original RIB and the converted archive can be viewed here and here. The RIB
file [view here] that imports the archive does so using a ReadArchive statement.

Archive Rib File

AttributeBegin
 TransformBegin
 Rotate -90 1 0 0
 Cylinder 0.2 0 2 360
 TransformEnd
 TransformBegin

Page 19

 Translate 0 2 0
 Rotate -90 1 0 0
 Cone 0.5 1 360
 TransformEnd
AttributeEnd

Although the archive (pre-baked) rib shown above is trivial, it does conform to the
format of a correctly structured file. Apart from being much more complicated,
archives generated by professional 3D applications such as Maya/RMS or Houdini
follow the same format. They also include commented text at the head of their
archive files.

Rib File Using an Archive

Display "untitled" "framebuffer" "rgb"
Format 427 240 1
Projection "perspective" "fov" 40
ShadingRate 1

LightSource "distantlight" 1 "intensity" 1.5
 "from" [0 0 0] "to" [0 0 1]

Translate 0 -1 5
Rotate -30 1 0 0
Rotate 0 0 1 0
Scale 1 1 -1

WorldBegin
 Surface "plastic"
 TransformBegin
 Translate -1 0 0
 ReadArchive "archive.rib"
 TransformEnd
 TransformBegin
 Translate 0 0 0
 ReadArchive "archive.rib"
 TransformEnd
 TransformBegin
 Translate 1 0 0
 ReadArchive "archive.rib"
 TransformEnd
WorldEnd

Page 20

Rib
Secondary Images - AOVs

Introduction
The output of a RenderMan beauty pass is a full colored image displayed in a
window, or saved to an image file. In either case, "rgb" or "rgba" data is "piped"
through the primary display channel using the rib Display statement.

 Display "PATH/untitled.tif" "tiff" "rgba"

Figure 1

With prman 12.0 the DisplayChannel statement was introduced. It enables
variables that store any RSL numeric data to be associated with their own "pipe" or
so-called secondary display channel. For example, a secondary image that
displays texture coordinate " t" data can be generated with the following two rib
statements.

 DisplayChannel "float t" "quantize" [0 0 0 0] "dither" [0]
 Display "+PATH/untitled_t.tif" "tiff" "t"

The two Display statements shown above were used to generate the following
images.

Page 21

Figure 1

Rib files generated by Pixar's mtor plugin have 42 pre-defined DisplayChannel
statements that enable 17 of the renderers primitive variables (P, N, s, t etc) and 32
shader output variables to be automatically referenced as sources of data for
secondary images.

Mtor Predefined Display Channels

Primitive Variables Shader Output Variables

 color Ci
 color Cs
 color Oi
 color Os
 float s
 float t
 float u
 float v
 normal N
 normal Ng
 point P
 vector E
 float du
 float dv
 vector dPdtime
 vector dPdu
 vector dPdv

 color Ambient
 color Backscattering
 color DiffuseColor
 color DiffuseDirect
 color DiffuseDirectShadow
 color DiffuseEnvironment
 color DiffuseIndirect
 color Incandescence
 color OcclusionDirect
 color OcclusionIndirect
 color Refraction
 color Rim
 color SpecularColor
 color SpecularDirect
 color SpecularDirectShadow
 color SpecularEnvironment
 color SpecularIndirect
 color Subsurface
 color Translucence
 color _Ci
 color _Oi
 color _albedo
 color _color
 color _diffusemeanfreepath
 color _indirectdiffuse
 color _radiance_t
 color _radiosity
 float __CPUtime
 float _area
 float _float
 float _occlusion
 vector_environmentdir

DisplayChannel's also enable data to be saved to a point cloud (.pct) file.

Quantization
Within the renderer, data such as floats, the rgb components of colors and the xyz
values of points, vectors and normals are stored with floating point precision.
When saving such data into an 8 bit per channel tiff file it is necessary to convert
the floating point data into integer values - a process known as quantitization.

Page 22

 DisplayChannel "float t" "quantize" [0 0 0 0] "dither" [0]
 Display "+PATH/untitled_t.tif" "tiff" "t"
 "quantize" [0 255 0 255] "dither" [0.5]

Without any quantization the output image would be a 32bit/channel (4,294,967,296
values per channel) tiff file ie.

 Display "+PATH/untitled_t.tif" "tiff" "t"
 "quantize" [0 0 0 0] "dither" [0.0]

Or a 16bit/channel (65,536 values per channel) tiff file ie.

 Display "+PATH/untitled_t.tif" "tiff" "t"
 "quantize" [0 65535 0 65535] "dither" [0.0]

For an excellent explanation of quantization refer to page 41 of "Advanced
RenderMan" by Tony Apodaca and Larry Gritz. Also refer to,

 Using Arbitrary Output Variables in PhotoRealistic Renderman
 - prman_technical_rendering/AppNotes/appnote.24.html

Generating a secondary image that "encodes" a primitive variable is straight forward
because such variables are inherently known to the renderer. This is not true for
shader output variables or AOV's (arbitary output variables). For example, figure 2
shows a secondary image (render pass) that contains "_specular" data.

Figure 2

Only by rendering the teapot using a shader that assigns values to a variable that it
declares as,

 output varying color _specular = 0;

and that also specifies a DisplayChannel in the rib file as...

 DisplayChannel "color _specular" "quantize" [0 0 0 0] "dither" [0]

can a secondary image (pass) be generated. Alternatively, if Pixar's Slim is used to

Page 23

make a shading network an AOV can be outputted that way. Whether a hand coded or
Slim generated shader is used unless it declares an output varying variable, and of
course assigns values to the variable, can data be "piped" through a secondary
display channel. For example, it would be futile to attempt to output a secondary image
containing specular data using the classic "plastic" shader because it does not assign
specular values to an output variable. The shader shown in listing 2 outputs specular
data through an AOV named _specular.

Listing 2

surface
spec_out(float Ks = 0.7,
 roughness = 0.1;
 color hilitecolor = 1;
output varying color _specular = 0)
{
normal n = normalize(N);
normal nf = faceforward(n, I);

Oi = Os;

vector i = normalize(-I);
_specular = Ks * specular(nf, i, roughness)
 * hilitecolor;
Ci = Oi * Cs * _specular;
}

The shader shown in listing 3 uses an output varying variable to "pipe" data into a
point cloud.

Listing 3

surface
bake_out(float Ks = 0.7,
 roughness = 0.1;
 color hilitecolor = 1;
 string channel = "",
 bakefile = "")
{
normal n = normalize(N);
normal nf = faceforward(n, I);
Oi = Os;
vector i = normalize(-I);
color spec = Ks * specular(nf, i, roughness)
 * hilitecolor;
if(bakefile != "")
 bake3d(bakefile, channel, P, n, "_specular", spec);
Ci = Oi * Cs * spec;
}

Page 24

A rib file that uses the "bake_out" shader might do so in this way.

 Surface "bake_out" "channel" ["_specular"]
 "bakefile" ["spec.ptc"]

Figure 3
Specular data stored in a point cloud

Page 25

Rib
Stereo Rendering & Anaglyphs

Note:
This tutorial is in an early stage of development. The tutorial assumes
the reader has access to prman version 13.5 and higher. For
convenience the reader will also require access to Shake.
MK Jan 2008.

output the alpha channel to camera_right.tif
DisplayChannel "float a"
ditto surface color
DisplayChannel "color Ci"

Projection "perspective" "fov" [40]
Format 640 480 1
ShadingRate 5

Right camera viewing transformations
TransformBegin
 Translate 0 0 20
 Rotate -10 1 0 0
 Rotate 0 0 1 0
 Scale 1 1 -1
 Camera "right"
TransformEnd
activate this line for on-screen viewing
#Display "camera_left.tif" "it" "rgba"

Save left and right camera images to file
Display "camera_left.tif" "tiff" "rgba"
Display "+camera_right.tif" "tiff" "Ci,a"
 "quantize" [0 255 0 255] "string camera" ["right"]

Left camera viewing transforms
Translate -0.05 0 20
Rotate -10 1 0 0
Rotate 0 0 1 0
Scale 1 1 -1

WorldBegin
 TransformBegin
 Translate -3.5 0 0
 ReadArchive "rotated_cylinders.rib"
 TransformEnd
 TransformBegin
 Translate 3.5 0 0

Page 26

 Rotate 45 0 0 1
 Rotate 180 0 1 0
 ReadArchive "rotated_cylinders.rib"
 TransformEnd
WorldEnd

Introduction
With release 13.5 of Pixars prman the renderer can now render two camera
simultaneously. The primary documentation about this facility can be found at,

 Pixar_docs/prman_technical_rendering/AppNotes/multiCamera.html

Pixars documentation addresses several technical issues related to
view-dependent shading. This tutorial ignores the impact that stereo rendering
has on shader writing. Instead this tutorial concentrates on the production of
"cheap and cheerful" colored images suitable for viewing with (old fashioned) red
and cyan spectacles. The tutorial is intended to help a reader experiment with
stereo rendering without having to bother with the paraphenalia of stereo
projectors, or high performance flat panel displays and "passive" spectacles, or
"active" (switched) spectacles.

Figure 1 - Left and Right Stereo Images

The rib file shown above will act as a template for two-camera
rendering. It assumes the scene to be rendered can be "imported" using
the ReadAchive statement. As can be seen from figure 1 the (test)
scene consists of 20 rotated cylinders. Two other assumptions are also
made, namely,
 1 the left and right cameras will remain parallel,
 2 the fixed camera, defined by the following statements,

 TransformBegin
 Translate 0 0 20
 Rotate -10 1 0 0
 Rotate 0 0 1 0
 Scale 1 1 -1
 Camera "right"
 TransformEnd

Page 27

will always define the "right" camera. Consequently, adjustments to the
separation between the cameras will be made to the x-translation of the
principle (left) camera. For example, the current separation is -0.05
units.

 Translate -0.05 0 20

In all other respects it is up to the reader to ensure, when they edit the
rib file, the transforms applied to the left and right camera remain the
same.

Converting Stereo Images to an Anaglyph
Listing 2 presents a Shake script that colorizes and combines two
rendered tif files into a single red/cyan anaglyph - figure 2.

Figure 2

For a description of how to do the conversion using PhotoShop refer to
"Mark Newbold's Stereo 3D Stuff" at,
 http://dogfeathers.com/3d/3dhowto.html

Listing 2 (anaglyph.shk)

image left_src = FileIn("camera_left.tif");
image left_no_red = Mult(left_src, 0, 1, 1, 1, 1);

image right_src = FileIn("camera_right.tif");
image right_red_only = Mult(right_src, 1, 0, 0, 1, 1);

image final = IAdd(left_no_red, right_red_only);
FileOut(final, "output_name.png");

The Shake script produces an output image that is suitable for viewing
on a web page - hence the "png" format, although "jpg" could also be
specified. It is possible to automate the process of rendering, image
conversion and viewing by using two System statements after the
WorldEnd. For example, the first System statement should invoke
Shake,

Page 28

 System "shake -script ./anaglyph.shk"

When using Cutter, the rendered images produced by the rib file will be
saved by prman in Cutter's directory. A relative path to "anaglyph.shk"
can be used as long as the Shake script is also saved in the Cutter
directory. Listing 3 gives the code for a simple web page that can be
used to view an anaglyph. Again it is assumed the html file will be saved
in the same directory as Cutter.

Listing 3 (camera_viewer.html)

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN"
 "http://www.w3.org/TR/REC-html40/loose.dtd">
<HTML>
<HEAD>
<TITLE>3D Viewer</TITLE>
<LINK rel=StyleSheet href="RELATIVE_PATH.css"
 TYPE="text/css" TITLE="YOUR_STYLE_NAME">

</HEAD>
<BODY BGCOLOR="#666666">

</BODY>
</HTML>

The text for the second System statement depends on the readers OS. For
example,
 Linux/Mozilla

 System "mozilla ./camera_viewer.html"

 Windows/Mozilla

 System "ixplore ./camera_viewer.html"

 OSX/Safari

 System "open -a /Applications/Safari.app ./camera_viewer.html"

Camera Separation
Deciding on an appropriae value for the separation of the left and right
cameras is a subject for experimentation. Factors that contribute to the
choice of camera separation are,
 camera to world distance
 camera "fov"
 image Size
 image background color
For example, figures 3, 4, 5 and 6 were all rendered with a camera
separation of 0.1 units yet the perception of depth is very different

Page 29

depending on image size and background color.

Figures 3 and 4 - 320x240 pixels

Figure 5 - 640x480 pixels

Page 30

Figures 6 - 640x480 pixels

Colored Glasses
Good photography stores will sell colored "lighting filters" or "gels" -
sheets of colored acetate. Bogan Imaging Inc. manufactures such
filters in many different colors. Unfortunately, they do not produce a
cyan filter. The anaglyphs produced by the Shake script (listing 2) for
the purposes of this tutorial were viewed using primary red and green
filters. The filters worked quite well. There are, however, several
companies that advertise on the internet that sell red/cyan glasses
designed specifically for viewing anaglyphs.

Page 31

Rib
Curve Basics

References
"Nurb Curves: A Guide for the Uninitiated"
devworld.apple.com/dev/techsupport/develop/issue25/schneider.html

Introduction
This tutorial covers the basic issues of dealing with the RenderMan's curve
primitive. Figure 1 shows four colored Curves, that have been rendered using
different "curve types" but sharing identical control vertices (cv's).

 b-spline
 bezier
 catmull-rom
 hermite

The cv's are colored white and gray connecting lines show the sequence of cv's.

Figure 1

There is a clear difference between each of the curves. In particular, notice the
green bezier curve is the only one to begin and end at the first and last cv. The RIB
statements used to render the bezier curve are,

Basis "bezier" 3 "bezier" 3
Curves "cubic" [4] "nonperiodic"
 "P" [-0.75 0 0.5 -0.45 0 1 0.5 0 0 0.75 0 1]
 "constantwidth" [0.005]
 "Cs" [0 1 0 0 1 0]

The rib file used to render this image can be viewed here. Curves generated by

Page 32

Maya and mtor/Rfm the curve type is "b-spline" ie.

 Basis "b-spline" 1 "b-spline" 1

Refer to rendering Maya curves with prman.

Assumptions
Although a RenderMan curve might look as if it can be defined by an arbitary
number of cv's - in the example shown above the "P" list contains four lots of xyz's.
Infact, the number of cv's must conform to formula determined by the type of curve
being rendered. The simpliest curve type to use is a "b-spline" because it can be
defined by any number of cv's - greater than 4. Unfortunately, in general a
"b-spline" curve does not begin and end at the first and last cv.

A "bezier" curve does have the desirable property of starting and finishing at the
first and last cv. However, the number of cv's, less 1, must be exactly divisible by
3. For instance, we might use 4, 7, 10 or 13 cv's for a "bezier" curve. The only time
when the restriction on the number of cv's can be ignored is when a "periodic"
curve is produced, in which case, the end of the curve wraps around to coincide
with the beginning of the curve. A single RenderMan Curves statement can define
multiple separate curves.

Page 33

RenderMan Procedural Primitives
Implementations in Python, Tcl and 'C'

Introduction
A helper app is an executible that is loaded by a RenderMan complient renderer as
a result of reading a Procedural "RunProgram" statement from a rib file or a rib
stream. For example,

 Procedural "RunProgram"
 ["H:/rman/helpers/hairball" "2.0 200 0.03"]
 [-2 2 -2 2 -2 2]

In this example, the call to Procedural informs the renderer that it should run a
program called hairball.exe located in the "H:/rman/helpers/" directory. The three
parameters,
 "2.0 200 0.03"

are values that are passed to the program. The six values,
 "-2 2 -2 2 -2 2"

define the size of the bounding box of the geometry the helper app will create.
When the renderer calls a helper app it not only passes the parameter values, it
also calculates the number of pixels the bounding box of the object will cover in the
rendered image. This value can help the app make level of detail decisions ie.
should it generate a low, medium or a hi-res version of the geometry?

This tutorial provides the reader with simple example of the implementation and use
of a helper app. Three implementations are given. Listing 2 is in the 'C'
programming language, listing 3 is in Python, and listing 4 is in Tcl. All three
implementations create the same geometry, a single quadric sphere, and all three
implementations expect two parameters. The first, pixel coverage, is ignored. The
second parameter specifies the radius of the sphere. It will be assumed the binary
or script for each of the example implementations is located at one of the following
locations,

 H:/rman/helpers/demo <.c .py .tcl>
 /home/$USER/rman/helpers/demo <.c .py .tcl>
 /Users/$USER/Documents/rman/helpers/demo <.c .py .tcl>

Basic Code
The following template code is based on the web notes, "Writing Procedural
Primitives with RenderDotC"
 www.dotcsw.com/doc/procedurals.html#runprogram

Page 34

Other sources of information about helper apps can be found by searching the
RenderMan documents that accompany Pixars prman. Pages 119/120 of
"Advanced RenderMan" by Tony Apodaca and Larry Gritz is also an excellent
source of information about this topic. Listing 1 is a simple rib file that can be used
to run each of the helper apps provided in listings 2, 3 and 4.

Listing 1 (rib)

Display "untitled" "framebuffer" "rgba"
Format 400 400 1
Projection "perspective" "fov" 30
ShadingRate 5
Head light
LightSource "distantlight" 1 "intensity" 1.5
 "from" [0 0 0] "to" [0 0 1]

Translate 0 0 5
Rotate -30 1 0 0
Rotate 20 0 1 0
Scale 1 1 -1
WorldBegin
 TransformBegin
 Surface "plastic"
 # Procedural "RunProgram" goes next.
 # Refer to the notes on each helper app
 # implementation for examples of the correct syntax.

 TransformEnd
WorldEnd

Python Implementation

Listing 2 (demo.py)

import sys

args = sys.stdin.readline()
while args:
 arg = args.split()
 pixels = float(arg[0])
 rad = float(arg[1])
 print 'TransformBegin'
 print 'Sphere %s %s %s 360' % (rad, -rad, rad)
 print 'TransformEnd'
 sys.stdout.write('\377')
 sys.stdout.flush()
 # read the next set of inputs
 args = sys.stdin.readline()

In the rib file the script would be invoked as follows,

Page 35

Windows
Procedural "RunProgram"
["python H:/rman/helpers/demo.py" "1"]
[-1 1 -1 1 -1 1]
Linux
Procedural "RunProgram"
["/usr/bin/python /home/$USER/rman/helpers/demo.py" "1"]
[-1 1 -1 1 -1 1]
MocOSX
Procedural "RunProgram"
["/usr/bin/python /Users/$USER/Documents/rman/helpers/demo.py" "1"]
[-1 1 -1 1 -1 1]

Tcl Implementation

Listing 3 (demo.tcl)

fconfigure stdout -translation binary

while { [gets stdin args] != -1 } {
 set pixels [lindex $args 0]
 set rad [lindex $args 1]

 puts "TransformBegin"
 puts "Sphere $rad -$rad $rad 360"
 puts "TransformEnd"

 puts "\377"
 flush stdout
 }

In the rib file the script would be invoked as follows,

Windows
Procedural "RunProgram"
["tclsh H:/rman/helpers/demo.tcl" "1"]
[-1 1 -1 1 -1 1]
Linux
Procedural "RunProgram"
["/usr/bin/tclsh /home/$USER/rman/helpers/demo.tcl" "1"]
[-1 1 -1 1 -1 1]
MocOSX
Procedural "RunProgram"
["/usr/bin/tclsh /Users/$USER/Documents/rman/helpers/demo.tcl" "1"]
[-1 1 -1 1 -1 1]

'C' Language Implementation
The code in listing 2 will build a helper app called demo.

Listing 4 (demo.c)

Page 36

#include <stdio.h>

void main()
{
float pixels, rad;
char args[256];

while(gets(args))
 {
 sscanf(args, "%f %f", &pixels, &rad);
 printf("Sphere %f %f %f 360\n", rad, -rad, rad);
 printf("%c", '\377');
 fflush(stdout);
 }
}

In the rib file this app would be invoked as follows,

Windows
Procedural "RunProgram"
["H:/rman/helpers/demo" "1"]
[-1 1 -1 1 -1 1]
Linux
Procedural "RunProgram"
["/home/$USER/rman/helpers/demo" "1"]
[-1 1 -1 1 -1 1]
MocOSX
Procedural "RunProgram"
["/Users/$USER/Documents/rman/helpers/demo" "1"]
[-1 1 -1 1 -1 1]

How it Works
Although it is not apparent from the code, the demo app automatically has access
to three streams by which it can receive and send data, namely, stdin, stdout
and stderr. Ordinarily, the first stream is connected to the keyboard, the others are
connected to the console.

Figure 1

When the renderer invokes a helper app it redirects its own the stdin and stdout
streams to those of the helper app so that, for example, input and output from

Page 37

functions/procs such as printf(), print and puts no longer use the console but
instead "feed" data to the renderer.

Page 38

RenderMan Procedural Primitives
RiPoints on a Sphere

Introduction
This tutorial follows on from the tutorial "Procedural Primitives: Basics". Procedural
primitives, or helper apps, are ideal when complex surfaces can be defined
procedurally. A procedural primitive can be loosely described as a shape made
from geometry that has been assembled according to the application of one or
more rules. This tutorial introduces a simple procedural primitive made from
light-weight ie. fast to render, RenderMan points. The spherical shell shown in
figure 1 consists of 5000 points.

Using a Intel MacOSX 667 MHz the following timings were obtained,
 1,000,000 points generated in 1 min 12 seconds
 100,000 points generated in 7 seconds
 10,000 points generated in 0 seconds!

Figure 1
10,000 random points generated by

ripoint.py

Figure 2
10,000 random points generated by

ripoint.tcl

The rib statement that requests the renderer to produce, say, three points of
uniform radius, colored red, green and blue is,

 Points "P" [-0.5 0 0 0 0 0 0.5 0 0]
 "constantwidth" [0.01]
 "Cs" [1 0 0 0 1 0 0 0 1]

There can be any number of xyz's following the "P" parameter, each triplet
specifies the position of a point. If the points are to have a specific color there must
be as many rgb color values following the "Cs" parameter as there are xyz's in the

Page 39

"P" list.

Spherical Shell of Points
The method for producing a spherical shell of randomly placed colored points is,
1. generate a random vector in a unit cube
2. normalize the vector
3. scale the vector by "radius"
4. use the vectors components to locate a point in space
5. generate a random color

By repeating these steps we obtain a spherical shell of points. The cloud proc uses
three functions that were developed in other tutorials,

Rib File for Testing
Listing 1 is a rib file that can be used to test both the python and the Tcl
implementations of the helper app. The rib file is setup for use on MacOSX. Refer to
the previous tutorial for examples of how python and Tcl helper apps should be
called when using Windows and Linux.

Listing 1 (ripoints.rib)

#Option "statistics" "endofframe" [1]
Display "shader_tester" "it" "rgba"
Format 250 250 1
Projection "perspective" "fov" 40
ShadingRate 1

Translate 0 0 6
Rotate 0 1 0 0
Rotate 0 0 1 0
Scale 1 1 -1
WorldBegin
 AttributeBegin
 Surface "constant"
 Procedural "RunProgram"
 ["/usr/bin/python FULL_PATH/ripoints.py" "2 10000 0.02"]
 [-2 2 -2 2 -2 2]
 #Procedural "RunProgram"
 #["/usr/bin/tclsh FULL_PATH/ripoints.tcl" "2 10000 0.02"]
 #[-2 2 -2 2 -2 2]
 AttributeEnd
WorldEnd

Python Implementation

Listing 2 (ripoints.py)

import sys, math, random

Page 40

random.seed(5)
def randBetween(min, max):
 return random.random() * (max - min) + min
def length(x, y, z):
 return math.sqrt(x*x + y*y + z*z)
def normalize(x, y, z):
 len = length(x, y, z)
 return x/len, y/len, z/len
def scaleVector(x, y, z, sc):
 return x*sc, y*sc, z*sc
def cloud(radius, num, width):
 print 'Points \"P\" ['
 for n in range(num):
 x = random.random() * 2 - 1;
 y = random.random() * 2 - 1;
 z = random.random() * 2 - 1;
 x,y,z = normalize(x, y, z)
 x,y,z = scaleVector(x, y, z, radius)
 print '%s %s %s' % (x, y, z)
 print '] \"constantwidth\" [%s]' % width
 print '\"Cs\" ['
 for n in range(num):
 r = randBetween(0, 1)
 g = randBetween(0, 1)
 b = randBetween(0, 1)
 print '%s %s %s' % (r, g, b)
 print ']'

def main():
 args = sys.stdin.readline()
 while args:
 arg = args.split()
 pixels = float(arg[0])
 rad = float(arg[1])
 num = int(arg[2])
 width = float(arg[3])

 print 'TransformBegin'
 cloud(rad, num, width)
 print 'TransformEnd'
 sys.stdout.write('\377')
 sys.stdout.flush()
 # read the next set of inputs
 args = sys.stdin.readline()

if __name__ == "__main__":
 main()

Tcl Implementation

Listing 3 (ripoints.tcl)

Page 41

fconfigure stdout -translation binary

proc randBetween { min max } {
 return [expr rand() * ($max - $min) + $min]
 }
proc length { x y z } {
 return [expr sqrt($x*$x + $y*$y + $z*$z)]
 }
proc normalize { x y z } {
 set len [length $x $y $z]
 return [list [expr $x/$len] [expr $y/$len] [expr $z/$len]]
 }
proc scaleVector { vect sc } {
 set X [expr [lindex $vect 0] * $sc]
 set Y [expr [lindex $vect 1] * $sc]
 set Z [expr [lindex $vect 2] * $sc]
 return [list $X $Y $Z]
 }
proc cloud { radius num width } {
 puts "Points \"P\" \["
 for {set n 0} {$n < $num} {incr n} {
 set x [expr rand() * 2 - 1]
 set y [expr rand() * 2 - 1]
 set z [expr rand() * 2 - 1]
 set vec [normalize $x $y $z]
 set vec [scaleVector $vec $radius]
 puts "[lindex $vec 0] [lindex $vec 1] [lindex $vec 2]"
 }
 puts "\] \"constantwidth\" \[$width\]"
 puts "\"Cs\" \["
 for {set n 0} {$n < $num} {incr n} {
 set r [randBetween 0 1]
 set g [randBetween 0 1]
 set b [randBetween 0 1]
 puts "$r $g $b "
 }
 puts "\]"
 }

while { [gets stdin args] != -1 } {
 set pixels [lindex $args 0]
 set rad [lindex $args 1]
 set num [lindex $args 2]
 set width [lindex $args 3]

 puts "AttributeBegin"
 cloud $rad $num $width
 puts "AttributeEnd"
 puts "\377"
 flush stdout
 }

Page 42

Animation
If radius of the cloud is increased over several frames it would create the illusion of
a fireworks explosion. The ripoints scripts implemented in this tutorial could be
instanced by each particle in a Maya or Houdini particle system. When viewed
within the modeler, such a particle system might look relatively unimpressive,
however, the final particle animation would appear to be very complex.

Page 43

RenderMan Procedural Primitives
Randomness

Introduction
Being able to generate points distributed randomly within or over a surface can be
useful when modeling phenomena such as fireworks. This tutorial presents in
listings 1 to 9 some useful utility procs implemented in Python, Tcl and the 'C'
programming language. The implementations of the utility procs will be given
followed by examples of their use.

Proc randBetween
This proc returns a random value between two input values. Although it is a very
simple it is surprisingly useful for positioning objects, such as RenderMan points
and curves, as well as setting randomized rgb components of colors.

Listing 1 - Python Implementation

import random

def randBetween(min, max):
 return random.random() * (max - min) + min

Listing 2 - Tcl Implementation

proc randBetween { min max } {
 return [expr rand() * ($max - $min) + $min]
 }

Listing 3 - 'C' Implementation

#include <stdlib.h>

double randBetween(double min, double max)
{
return ((double)rand()/RAND_MAX) * (max - min) + min;
}

Procs length & normalize
The proc length returns the length of a vector. The proc normalize normalizes a
vector. Typically, the input values to this proc are the xyz position of a geometric

Page 44

point. However, the location of the geometric point can be considered to represent
the "head" of a vector and as such it can be converted to a unit vector.

Listing 4 - Python Implementation

import math

def length(x, y, z):
 return math.sqrt(x*x + y*y + z*z)

def normalize(x, y, z):
 len = length(x, y, z)
 return x/len, y/len, z/len

Listing 5 - Tcl Implementation

proc length { x y z } {
 return [expr sqrt($x*$x + $y*$y + $z*$z)]
 }

proc normalize { x y z } {
 set len [length $x $y $z]
 return [list [expr $x/$len] [expr $y/$len] [expr $z/$len]]
 }

Listing 6 - 'C' Implementation

#include <stdlib.h>
#include <math.h>

double length(double pnt[3])
{
return sqrt((pnt[0] * pnt[0]) +
 (pnt[1] * pnt[1]) +
 (pnt[2] * pnt[2]));
}

void normalize(double pnt[3])
{
double len = length(pnt);
pnt[0] /= len;
pnt[1] /= len;
pnt[2] /= len;
}

Proc scaleVector
This proc returns the xyz values of a vector re-sized to a specified length.

Page 45

Listing 7 - Python Implementation

def scaleVector(x, y, z, sc):
 return x*sc, y*sc, z*sc

Listing 8 - Tcl Implementation

proc scaleVector { vect sc } {
 set X [expr [lindex $vect 0] * $sc]
 set Y [expr [lindex $vect 1] * $sc]
 set Z [expr [lindex $vect 2] * $sc]
 return [list $X $Y $Z]
 }

Listing 9 - 'C' Implementation

void scaleVector(double pnt[3], double sc)
{
pnt[0] *= sc;
pnt[1] *= sc;
pnt[2] *= sc;
}

Examples of Use
This section provides some simple examples of how the procs given in listing 1 to 9
can be used with RenderMan's point primitive. For brevity, the examples are only
given in Python.

RiPoints in a Rectangular Volume

Figure 1

Listing 10 - rectangular box

import sys, math, random

def box(width, height, depth, num, size):

Page 46

 print 'Points \"P\" ['
 for n in range(num):
 x = randBetween(-width/2, width/2)
 y = randBetween(-height/2, height/2)
 z = randBetween(-depth/2, depth/2)
 print '%s %s %s' % (x, y, z)
 print '] \"constantwidth\" [%s]' % size
 print '\"Cs\" ['
 for n in range(num):
 r = randBetween(0, 1)
 g = randBetween(0, 1)
 b = randBetween(0, 1)
 print '%s %s %s' % (r, g, b)
 print ']'

def main():
 args = sys.stdin.readline()
 while args:
 arg = args.split()
 pixels = float(arg[0])
 width = float(arg[1])
 height = float(arg[2])
 depth = float(arg[3])
 num = int(arg[4])
 size = float(arg[5])

 print 'TransformBegin'
 box(width, height, depth, num, size)
 print 'TransformEnd'
 sys.stdout.write('\377')
 sys.stdout.flush()
 # read the next set of inputs
 args = sys.stdin.readline()

if __name__ == "__main__":
 main()

RiPoints in a Ring

Figure 2

Page 47

Listing 11 - Ring

import sys, math, random

def ring(rad, num, size):
 print 'Points \"P\" ['
 for n in range(num):
 x = randBetween(-1, 1)
 y = 0
 z = randBetween(-1, 1)
 x,y,z = normalize(x,y,z)
 x,y,z = scaleVector(x,y,z,rad)
 print '%s %s %s' % (x, y, z)
 print '] \"constantwidth\" [%s]' % size
 print '\"Cs\" ['
 for n in range(num):
 r = randBetween(0, 1)
 g = randBetween(0, 1)
 b = randBetween(0, 1)
 print '%s %s %s' % (r, g, b)
 print ']'

def main():
 args = sys.stdin.readline()
 while args:
 arg = args.split()
 pixels = float(arg[0])
 rad = float(arg[1])
 num = int(arg[2])
 size = float(arg[3])

 print 'TransformBegin'
 ring(rad, num, size)
 print 'TransformEnd'
 sys.stdout.write('\377')
 sys.stdout.flush()
 # read the next set of inputs
 args = sys.stdin.readline()

if __name__ == "__main__":
 main()

RiPoints on a Disk

Page 48

Figure 3

Listing 12 - Disk

import sys, math, random

def disk(rad, num, size):
 print 'Points \"P\" ['
 for n in range(num):
 x = randBetween(-1, 1)
 y = 0
 z = randBetween(-1, 1)
 x,y,z = normalize(x,y,z)
 randRadius = randBetween(0, rad)
 x,y,z = scaleVector(x,y,z,randRadius)
 print '%s %s %s' % (x, y, z)
 print '] \"constantwidth\" [%s]' % size
 print '\"Cs\" ['
 for n in range(num):
 r = randBetween(0, 1)
 g = randBetween(0, 1)
 b = randBetween(0, 1)
 print '%s %s %s' % (r, g, b)
 print ']'

def main():
 args = sys.stdin.readline()
 while args:
 arg = args.split()
 pixels = float(arg[0])
 rad = float(arg[1])
 num = int(arg[2])
 size = float(arg[3])

 print 'TransformBegin'
 disk(rad, num, size)
 print 'TransformEnd'
 sys.stdout.write('\377')
 sys.stdout.flush()
 # read the next set of inputs
 args = sys.stdin.readline()

if __name__ == "__main__":

Page 49

 main()

RiPoints on a Cone

Figure 4

Listing 13 - Cone

import sys, math, random

def cone(rad, num, size):
 print 'Points \"P\" ['
 for n in range(num):
 x = randBetween(-1, 1)
 y = 0
 z = randBetween(-1, 1)
 x,y,z = normalize(x,y,z)
 randRadius = randBetween(0, rad)
 x,y,z = scaleVector(x,y,z,randRadius)
 y += 1 - randRadius # <<---
 print '%s %s %s' % (x, y, z)
 print '] \"constantwidth\" [%s]' % size
 print '\"Cs\" ['
 for n in range(num):
 r = randBetween(0, 1)
 g = randBetween(0, 1)
 b = randBetween(0, 1)
 print '%s %s %s' % (r, g, b)
 print ']'

def main():
 args = sys.stdin.readline()
 while args:
 arg = args.split()
 pixels = float(arg[0])
 rad = float(arg[1])
 num = int(arg[2])
 size = float(arg[3])

 print 'TransformBegin'

Page 50

 cone(rad, num, size)
 print 'TransformEnd'
 sys.stdout.write('\377')
 sys.stdout.flush()
 # read the next set of inputs
 args = sys.stdin.readline()

if __name__ == "__main__":
 main()

RiPoints on a Cylinder

Figure 4

Listing 14 - Cylinder

import sys, math, random

def cylinder(rad, depth, height, num, size):
 print 'Points \"P\" ['
 for n in range(num):
 x = randBetween(-1, 1)
 y = 0
 z = randBetween(-1, 1)
 x,y,z = normalize(x,y,z)
 y = randBetween(depth, height) # <<---
 print '%s %s %s' % (x, y, z)
 print '] \"constantwidth\" [%s]' % size
 print '\"Cs\" ['
 for n in range(num):
 r = randBetween(0, 1)
 g = randBetween(0, 1)
 b = randBetween(0, 1)
 print '%s %s %s' % (r, g, b)
 print ']'

def main():
 args = sys.stdin.readline()
 while args:
 arg = args.split()

Page 51

 pixels = float(arg[0])
 rad = float(arg[1])
 depth = float(arg[2])
 height = float(arg[3])
 num = int(arg[4])
 size = float(arg[5])

 print 'TransformBegin'
 cylinder(rad, depth, height, num, size)
 print 'TransformEnd'
 sys.stdout.write('\377')
 sys.stdout.flush()
 # read the next set of inputs
 args = sys.stdin.readline()

if __name__ == "__main__":
 main()

Spheres on a Sphere

Figure 5

Listing 15 - Sphere

import sys, math, random

def spheres(rad, num, size):
 for n in range(num):
 x = randBetween(-1.0, 1.0)
 y = randBetween(-1.0, 1.0)
 z = randBetween(-1.0, 1.0)
 x,y,z = normalize(x,y,z)
 print 'TransformBegin'
 print 'Translate %s %s %s' % (x, y, z)
 print 'Color %s %s %s' % (x, y, z)
 print 'Sphere %s %s %s 360' % (size, -size, size)
 print 'TransformEnd'

def main():
 args = sys.stdin.readline()

Page 52

 while args:
 arg = args.split()
 pixels = float(arg[0])
 rad = float(arg[1])
 num = int(arg[2])
 size = float(arg[3])

 print 'TransformBegin'
 spheres(rad, num, size)
 print 'TransformEnd'
 sys.stdout.write('\377')
 sys.stdout.flush()
 # read the next set of inputs
 args = sys.stdin.readline()

if __name__ == "__main__":
 main()

Page 53

RenderMan Procedural Primitives
Blobbies

Introduction
Blobby objects, otherwise known as soft objects or iso-surfaces, are part of the
RenderMan Specification. They are also refered to as RiBlobby because of the
name of the function in the 'C' language binding of the RenderMan interface. Within
Pixar's RenderMan Studio, there is also a Mel proc called RiBlobby. Blobby, or
smooth blending effects can also be obtained with shaders, refer to,

 fundza.com/rman_shaders/blobbies/blobbies.html

Specification of a Blobby Surface
The way that blobbies are specified in a rib file can become very complex. Using
variations of the Blobby rib statement it is possible, for example, to "partition" the
ellipsoids that make up a blobby surface into groups that merge with each other but
do not merge with other groups. The code presented here considers a blobby to be
made of a single homogeneous group whose ellipsoid elements "blob" together.

For full details of the Blobby specification refer to,

ProServerDocs\prman_technical_rendering\AppNotes\appnote.31.html

Before looking at the implementation of a help app that generates a complex cluster
of blobbies, the reader should experiment with the simple blobby given in the rib file
of listing 1.

Figure 1

Listing 1

Display "untitled" "framebuffer" "rgba"
Format 250 250 1
Projection "perspective" "fov" 30

Page 54

ShadingRate 1
LightSource "distantlight" 1 "intensity" 1.5 "from" [0 0 0]
 "to" [0 0 1]
Translate -0.2 0 5
Rotate 0 1 0 0
Rotate 0 0 1 0
Scale 1 1 -1
WorldBegin
 TransformBegin
 Surface "plastic"
 Blobby 3
 [1001 0
 1001 16
 1001 32
 0 3 0 1 2]
 [1 0 0 0 0 1 0 0 0 0 1 0 -0.5 0.2 0.0 1
 1 0 0 0 0 1 0 0 0 0 1 0 0.9 0.5 0.0 1
 1 0 0 0 0 1 0 0 0 0 1 0 0.5 -0.5 0.0 1]
 [""]
 "Cs" [1 0 0 0 1 0 0 0 1]
 TransformEnd
WorldEnd

Blobby Helper App
Listing 2 and 3 implement a blobby helper app in Python and Tcl. A rib that
references the helpers is shown in listing 4.

Figure 2
1000 ellipsoids in a volume 2 x 1 x 2 units.

The parameters in the rib file were "1000 0.5 4.0 1.0 4.0"

Listing 2 (blobby.py)

import sys, math, random

random.seed(5)
def randBetween(min, max):
 return random.random() * (max - min) + min

def getMatrix(size, width, height, depth):
 mat = '%s 0 0 0 0 %s 0 0 0 0 %s 0' % (size,size,size)

Page 55

 x = randBetween(-width/2, width/2)
 y = randBetween(-height/2, height/2)
 z = randBetween(-depth/2, depth/2)
 mat += ' %s %s %s 1' % (x,y,z)
 return mat

def blobby(num, size, width, height, depth):
 ellipsoid_ID = "1001 "
 index = 0
 out = 'Blobby %s ' % num

 # begin the "code" block
 out += "[\n"
 for n in range(num):
 out += '%s' % ellipsoid_ID
 out += '%s ' % index
 index += 16
 out += "\n"
 # define the blobby operator and indices of
 # the blobs forming a "set" ie. group
 add_ID = 0
 blob_count = num
 out += '%s %s ' % (add_ID, blob_count)
 for n in range(num):
 out += '%s ' % n
 out += "]\n"

 # begin the transforms block
 out += "[\n"
 for n in range(num):
 out += '%s \n' % (getMatrix(size,width,height,depth))
 out += "]\n"

 # begin the depth map block
 out += "[\"\"]\n"
 return out

def main():
 args = sys.stdin.readline()
 while args:
 arg = args.split()
 pixels = float(arg[0])
 num = int(arg[1])
 size = float(arg[2])
 width = float(arg[3])
 height = float(arg[4])
 depth = float(arg[5])

 print 'TransformBegin'
 print '%s' % blobby(num, size, width, height, depth)
 print 'TransformEnd'
 sys.stdout.write('\377')
 sys.stdout.flush()
 # read the next set of inputs

Page 56

 args = sys.stdin.readline()

if __name__ == "__main__":
 main()

Listing 2 (blobby.tcl)

fconfigure stdout -translation binary

#---
proc randBetween { min max } {
 return [expr rand() * ($max - $min) + $min]
 }
#---
proc getMatrix { size width height depth } {
set mat "$size 0 0 0 0 $size 0 0 0 0 $size 0 "
append mat [format "%1.3f " [randBetween -$width/2 $width/2]]
append mat [format "%1.3f " [randBetween -$height/2 $height/2]]
append mat [format "%1.3f 1\n" [randBetween -$depth/2 $depth/2]]
return $mat
}
#---
proc blobby { num size width height depth} {
set ellipsoid_ID "1001 "
set index 0

set out ""
append out "Blobby $num \n"

begin the "code" block
append out "\[\n"
for { set n 0 } { $n < $num } { incr n 1 } {
 append out $ellipsoid_ID
 append out $index
 incr index 16
 append out "\n"
 }

define the blobby operator and indices of
the blobs forming a "set" ie. group
set add_ID 0
set blob_count $num
append out "$add_ID $blob_count "
for { set n 0 } { $n < $num } { incr n 1 } {
 append out "$n "
 }
append out "\]\n"

begin the transforms block
append out "\[\n"
for { set n 0 } { $n < $num } { incr n 1 } {

Page 57

 append out [getMatrix $size $width $height $depth]
 }
append out "\]\n"

begin the depth map block
append out "\[\"\" \]\n"
return $out
}
#---
while { [gets stdin args] != -1 } {
 set pixels [lindex $args 0]
 set num [lindex $args 1]
 set size [lindex $args 2]
 set width [lindex $args 3]
 set height [lindex $args 4]
 set depth [lindex $args 5]

 puts "TransformBegin"
 puts [blobby $num $size $width $height $depth]
 puts "TransformEnd"

 puts "\377"
 flush stdout
 }

Listing 4 (helper_test.rib)

Display "shader_tester" "framebuffer" "rgba"
Format 300 200 1
Projection "perspective" "fov" 40
ShadingRate 10
LightSource "distantlight" 1 "intensity" 1.5 "from" [0 0 0]
 "to" [0 0 1]
Translate 0 0.4 18
Rotate -30 1 0 0
Rotate 30 0 1 0
Scale 1 1 -1
WorldBegin
 AttributeBegin
 Surface "plastic"
 Procedural "RunProgram"
 ["/usr/bin/python FULL_PATH/blobby.py" \
 "1000 0.5 4.0 1.0 4.0"]
 [-2 2 -2 2 -2 2]
 AttributeEnd
WorldEnd

Page 58

RSL
Shading Language Overview

Introduction
Because rib files are used to convey information from a modeling application to a
renderer, RenderMan implicitly stresses an important distinction between, what is
referred to in the Pixar literature, as

shape - the geometry of an object ie. the output of a modeler, and
shading - the appearance of an object ie. the output of a renderer.

For example, figure 1, despite its appearance, consists only of two closely spaced
square polygons that been been transformed by the "shading" techniques of
displacement, texture, specular and transparency mapping.

Figure 1 Image by Stephen Cody of the Savannah College of Art and Design

Shaders
Clearly, shaders play a crucial creative role in defining the appearance of CG a
production. RenderMan has been adopted by many leading studios because it
allows special purpose shaders to be added to those that already exist.

Individual shaders are small sub-routines (functions) written in a specialised
programming language called the RenderMan Shading Language (RSL). The
language enables new shaders to extend the creative possibilities of the renderer; it
allows computer artists to find endless ways of controlling the appearance of a 3D
scene through the use of custom shaders. The only limit is their imagination, their
ability to write new, or adapt existing shaders and their creative flare at adjusting
the parameters that control the visual effect of a shader.

In some respects RenderMan shaders are analagous to plugins for, say,

Page 59

PhotoShop and AfterEffects. Plugins for those applications provide extra
functionality to their host program. Likewise, shaders "work" within the environment
of a renderer.

Shader Types
While shaders are generally independent of each other ie. any surface shader may
be used with any displacement shader, each type of shader has a specific role in
the rendering process. Therefore, a surface shader such as plastic cannot be
used as a displacement shader.

RenderMan divides the rendering process into six tasks each of which uses a
distinctive type of shader. They are,

light source shaders,
surface shaders,
displacement shaders,
volume shaders,
transformation shaders, and
imager shaders.

Shaders calculate specific values at more or less regular intervals across the
surfaces being shaded by a renderer. A RenderMan complient renderer
sub-divides each object in a 3D scene into a fine mesh of micro-polygons.

A renderer, as a consequence of processing a rib file, or some other source of rib
information, makes data available to the shader so that the shader can calculate
specific values. A displacement shader, for example, calculates a displaced
location and orientation for each micro-polygon. A surface shader, on the other
hand, determines the apparent color and opacity of each micro-polygon.

Shading Language Variables
Data going "into" a shader, as well as the values calculated by a shader are stored
in memory locations that hold, what is referred to, as variables. Each time a shader
is called ie. used by the renderer, it gets data from,

1. specific parameter values assigned to a shader, perhaps as a result of using
Maya and Pixars SLIM shader interface - these are stored in a shaders instance
variables,
2. internal data the renderer calculates and then makes available to a shader -
these are stored in global variables, and finally,
3. private data that temporarily stores the results of its own calculations are kept
in local variables.

Page 60

Figure 2

Shaders use global variables to read data from the renderer (shader input), for
example, the color of a surface.

Shaders also use some global variables to write data to the renderer (shader
output), for example, the apparent color of the light leaving the surface being
shaded.

Shading Language Data Types
The Shading Language uses the following data types:

float, same as the 'C' language,
string, similiar to an array of characters in the 'C' language,
point, stores the xyz coordinates of a location in 3D space,
normal, stores the xyz coordinates of a surface normal,
vector, stores the xyz coordinates of a vector,
color, represents the color and opacity of a light source or a surface,
matrix, a list of 16 floats.

Notice that integers are not supported by the language, therefore, all single values
must be declared as a float. Also local variables cannot use the string data type.

Writing and Compiling a Shading Language File
Writing a shader in the Shading Language is similiar to writing an application in the
'C' language. Like a 'C' language source file (.c), code in the Shading Language is
written with a text editor, but named with a .sl file extension. The easiest way to
write a shader is to use the Cutter text editor because it has the following facilities.

access to simple shader templates - figure 3,
syntax coloration of RSL code,
alt + e + double click on a RSL keyword key to access Pixar's documentation,
alt + e hot key compilation of shader source code.

Page 61

Figure 3 - accessing shader templates

Successful compilation produces a shading language object file ie. a shader. The
extension of the shader file will vary from one RenderMan complient system to
another. For example, Pixar's system uses ".slo" as the file extension for shaders
compiled with their "shader" compiler. The name of the shader file will match the
name of the shader defined by the code rather than the name of the .sl file. When
using Cutter, shader files will be saved to a "shaders" directory specified by the
user in Cutter's preferences.

SL source code files can be compiled from a command prompt window (Windows)
or a shell (linux and MacOSX). For example, compiling a file called test.sl, using
Pixars compiler, is done as follows,

 (prompt%) shader test.sl

A Basic Rib File For Testing a Shader
Once a shader has successfully compiled you will want to test it. This can be
accomplished using Maya (plus a Pixar's mtor or Rfm plugin) or Houdini (does not
require a plugin). Alternatively, a sample rib file might be edited so that it uses your
new shader. Again, Cutter speeds up development by generating and rendering
either single frame or multiple frame rib files.

The following rib file can be used to test a shader. A file of this type is generated
automatically by Cutter.

Listing 1

Display "shader tester" "framebuffer" "rgba"
Format 427 240 1
Projection "perspective" "fov" 40
ShadingRate 1

Translate 0 0 5
Rotate -30 1 0 0
Rotate 0 0 1 0
Scale 1 1 -1

Page 62

WorldBegin
 LightSource "pointlight" 1 "intensity" 35
 "from" [1 4 1]
 AttributeBegin
 Surface "YOUR_SHADER"
 Scale 4 4 1
 Polygon "P" [-0.5 0 -0.5 -0.5 0 0.5
 0.5 0 0.5 0.5 0 -0.5]
 "st" [0 0 0 1 1 1 1 0]
 AttributeEnd
WorldEnd

When this rib file is rendered via Cutter a dialog box will prompt the user to add
three Options to the beginning of the document. The Options will be automatically
added to the users rib file. For example,

Option "searchpath" "texture" "../../textures"
Option "searchpath" "shader" "@:../../shaders"
Option "searchpath"
 "archive" "../archives:Cutter_Help/templates/Rib"

Without these Option lines the user will be required to specify full paths to their
custom shaders, textures and rib archives. By default, rib files generated by Cutter
always begin with Options based on the users settings in Cutter's preferences.

Page 63

RSL
What is a Surface Shader?

Surface Shader Algorithm
Writing a shader is like preparing a meal. While different recipes use different
ingredients, all recipes use a general set of rules as well as applying specific rules
that make a particular dish unique. An algorithm is a list of rules that must be
followed to achieve a certain result. The purpose of a surface shader is to

calculate the apparent surface opacity,
calculate the apparent surface color

 ie. the color of the light leaving an object,

The renderer uses the opacity information to 'mix' background and foreground
surface colors so that background objects in a 3D scene will "show through" any
semi-transparent foreground objects. The following algorithm (recipe) lists the four
steps that the standard shader, plastic, follows in order to set the appropriate
opacity and color of the point on the surface of an object that is being shaded,

1 Make a copy (n) of the surface normal (N) then, using the viewing vector (I),
ensure another copy (nf) faces the camera

2 Set the apparent opacity of the surface (Oi)

3 Find the colors of the light that is coming directly from the light sources and
set the 'response' of the surface to those colors. An overall color is found by
(generally) making three (ambient, diffuse and specular) lighting calculations.

 3.1 add the colors of all the light sources that contribute ambient light,

 3.2 add the colors of the light sources that contribute to the diffuse
appearance of the surface,

 3.3 add the colors of the light sources that contribute to the specular (shiny)
highlights of the surface,

 Before being added, the ambient, diffuse and specular components are scaled
by "Ka", "Kd" and "Ks". This enables an artist to control how an object
responds to the lights in a scene.

4 Set the apparent color (Ci) of the surface by combining the light color found in
step 3 and the opacity found in step 2.

Page 64

The Geometry of Shading

Figure 1

The Components of Lighting

Figure 2

Surface Shading & Global Variables
The following table lists the global variables accessible to a surface shader. Those
shown in red are "read-only", those in green are the variables to which a surface
shader must assign values.

Global
Variable

Ci
Oi
Cs
Os

N
s, t

P
Ng
u,v

du, dv
dPdu,dPdv

L
Cl

l
E

Meaning
apparent color of the surface (output)
apparent opacity the surface (output)
true surface color (input)
true surface opacity (input)
surface shading normal
surface texture coordinates
surface position
surface geometric normal
surface parameters
change in u, v across the surface
change in position with u and v
direction from surface to light source
light color
direction of a ray stricking a surface point
position of the camera

Page 65

RSL
Writing Surface Shaders

Overview
This tutorial covers the basics of using the RenderMan Shading Language for the
purpose of writing surface shaders. Several shaders are presented that can serve
as starting points for the readers own explorations. The reader is encouraged to
use the Cutter text editor for shader writing. Details of how it should be set up are
given in the tutorial "Cutter: Shader Writing" This tutorial develops a series of
variations of a basic constant shader. Finally, issues of diffuse lighting are
addressed. The shading techniques used in this tutorial do not require ray tracing.

A Basic Surface Shader
Prior to shading an object a RenderMan complient renderer subdivides the surface
of an object into mirco-polygons. The role of a surface shader is to determine the
apparent surface opacity and color of each micro-polygon. The first set of shaders
in this section are based on Cutter's "Constant" template surface shader.

To create a new shader document
select either "Diffuse" or "Constant"

Although a constant shader does not consider the effect of lighting it is,
nonetheless, a very good starting point for learning about shader writing.

The Constant Color Shader

/* Shader description goes here */
surface
constant_test(float Kfb = 1 /* fake brightness */)
{
color surfcolor = 1;

/* STEP 1 - set the apparent surface opacity */
Oi = Os;

Page 66

/* STEP 2 - calculate the apparent surface color */
Ci = Oi * Cs * surfcolor * Kfb;
}

In STEP 1 the apparent surface opacity is assigned the same value of the true
surface opacity. In other words, this shader ensures a surface will conform exactly
to the value of the Opacity statement in the rib file.

 Opacity 1 1 1 # this will define the value of "Os"
 Color 1 1 1 # this will define the value of "Cs"
 Surface "constant_test" "Kfd" 1
 Polygon "P" [data....]

The global variables that defines the apparent surface opacity and the true surface
opacity are Oi and Os. Hence, the assignment,

 Oi = Os;

ensures that nothing fancy is being done to the opacity of an object.

In STEP 2 the apparent surface color (Ci) is assigned the value of the true surface
color (Cs) tinted by an internally defined variable called surfcolor. Colors are
"combined" by their red, green and blue components being multiplied together. Color
multiplication, filters (or tints) one color by another color. Because surfcolor is
white ie. its rgb components are all equal to 1.0, it has no effect on the resulting
color. In later examples, surfcolor will have a noticable effect on the final apparent
color of a surface.

The multiplication by the apparent surface opacity (Oi) ensures the resulting color
of each micro-polygon is pre-multiplied by its opacity. This enables the renderer
to correctly composite the micro-polygons of foreground surfaces over
micro-polygons of surfaces in the background.

Assigning a Color
Colors may be assigned as a single value (grayscale) or three individual
(component) values, for example,

 color c; /* declare a variable of data type color */
 c = 0.8; /* grayscale color */
 c = color(0.3, 0.9, 0.5); /* assign a specific color */

"RGB" is the default color space. Listing 1 applies a pale green color to a surface.

Listing 1

surface
constant_test1(float Kfb = 1)
{
color surfcolor = color(0.3, 0.9, 0.5);

Page 67

Oi = Os;
Ci = Oi * Cs * surfcolor * Kfb;
}

Figure 1 - a polygon of constant color

Adding Color Parameters
Two color parameters have been added to listing 2. The mix() function uses these
colors to create a ramp based on the 't' texture coordinate.

Listing 2

surface
constant_test2(float Kfb = 1;
 color top = 1,
 lower = 0)
{
color surfcolor = mix(top, lower, t);

Oi = Os;
Ci = Oi * Cs * surfcolor * Kfb;
}

The Surface statement in the rib file that referenced the shader is shown below.

 Surface "constant_test2"
 "Kfb" 1.0
 "top" [0.878 0.996 0.474]
 "lower" [0.580 0.690 0.988]

Figure 2 - a color ramp based on the 't' texture coordinate

A color may also be modified by adjusting one of its components ie.

 setcomp(c, 0, 0.9); /* reset red to 0.9 */

Page 68

In the example shown above, the function setcomp() has been used to set the red
component to 0.9. The indices 0, 1 and 2 reference the red, green and blue
components respectively.

Declaring an Array of Color Parameters
A color parameter may also be declared as an array. Listing 3 also uses the 't'
texture coordinate but this time in conjunction with the spline() function.

Listing 3

surface
spline_test(float Kfb = 1;
 color c[4] = {1,0,1,0})
{
color surfcolor = spline(t,c[0],c[0],c[1],c[2],c[3],c[3]);

Oi = Os;
Ci = Oi * Cs * surfcolor * Kfb;
}

For simplisity, the declaration of the default color values have been set to white and
black ie {1,0,1,0}. However, the color() function can be used within the array
declaration to set specific values ie.

 color c[4] = {color(1,1,1), color(1,1,0),
 color(1,0,0), color(0,1,0}

The Surface statement in the rib file that referenced the shader is shown below.

 Surface "spline_test"
 "Kfb" 1.0
 "c" [0.878 0.996 0.474 0.580 0.690 0.988
 0.623 0.305 0.658 0.349 0.674 0.427]

Figure 3a - a color spline based on the 't' texture coordinate

Cutter provides a simple color picker to help users interactively define the "rgb"
values of a color. To use the picker, select the three values of a color and click the
right mouse button (Windows & Linux) or Control + mouse click (MacOSX).

Page 69

Figure 3b
Using Cutter's popup menu to edit "rgb" values.

Adding Uniform Noise
In this example the mix() function is again used to create a ramp based on the 't'
texture coordinate but this time the noise() function is used to smoothly "jitter" the
ramp.

Listing 4

surface
noise_test1(float Kfb = 1,
 amp = 0, /* amplitude of the noise */
 freq = 4; /* frequency of the noise */
 color top = 1,
 lower = 0)
{
// Noise values range from 0 to 1.
float ns =noise(s * freq, t * freq);

// Offset the true value of 't'. The 'amp' parameter will allow
// the artist to strengthen or weaken the visual effect.
float tt = t + ns * amp;

color surfcolor = mix(top, lower, tt);
Oi = Os;
Ci = Oi * Cs * surfcolor * Kfb;
}

The Surface statement that referenced the shader is shown below.

 Surface "noise_test1"
 "Kfb" 1.0
 "amp" 0.8
 "freq" 9
 "top" [0.984 0.976 0.364]
 "lower" [0.925 0.317 0.317]

Page 70

Figure 4a - a noisey color ramp

To ensure the "jittering" occurs around the mid-point of the range of values
generated by the noise() function it is common practice to subtract 0.5 from the
"raw" noise value. A slightly different visual effect, figure 4b, is obtained by using
the code shown below.

 float ns = abs(noise(s * freq, t * freq) - 0.5);

Figure 4b

Adding Non-Uniform Noise
The following shader is similiar to listing 3 except that the two input colors are
noisely mixed, more or less uniformly, across a surface. The frequency of the noise
in 's' and 't' can be individually controlled - hence the stretching shown in figure 5a.

Listing 5

surface
noise_test2(float Kfb = 1,
 sfreq = 4, /* s frequency of the noise */
 tfreq = 4, /* t frequency of the noise */
 lo = 0.4,
 hi = 0.5;
 color hiColor = color(0.490,0.894,0.478),
 loColor = color(0.286,0.411,0.678))
{
float ns = noise(s * sfreq, t * tfreq);

float blend = smoothstep(lo, hi, ns);
color surfcolor = mix(loColor, hiColor, blend);
Oi = Os;
Ci = Oi * Cs * surfcolor * Kfb;
}

Page 71

The smoothstep function ensures that mix returns either "hiColor" or "loColor"
above and below the thresholds of "lo" and "hi". However, between those
thresholds, smoothstep returns a value between 0.0 and 1.0. The shader blends
the two colors in the transition "zone" between "lo" and "hi" and gives a fairly good
anti-aliased pattern.

Figure 5a Figure 5b - noise visualized as a height field.

3D Noise
The previous two shaders generated noise values on the basis of the 'st' texture
coordinates of a surface and as a result their patterns were based on 2D noise.
Using the 'st' coordinates in this way generates a pattern that is "stuck" to the
surface of an object to which the shader is assigned. There are ocassions,
however, when a pattern based on 3D noise is required. The shader in listing 6
uses the surface point (P) as an input to the noise function.

Listing 6

surface
noise_test3(float Kfb = 1,
 freq = 4, /* frequency of the noise */
 lo = 0.4,
 hi = 0.5)
{
float ns = noise(P * freq);

Oi = smoothstep(lo, hi, ns);
Ci = Oi * Cs * Kfb;
}

To illustrate what is meant by "3D noise" the shader modifies the apparent opacity
of a surface - in effect acting as an irregular "cookie-cutter". To further emphasize
the 3D nature of the effect, figure 6 shows a rendering of a stack of square
polygons all of which share the "noise_test3" shader.

Page 72

Figure 6

3D Noise & Coordinate Space
The problem with the "noise_test3" shader is that the xyz location of surface point P
is measured from the origin of the camera coordinate system - it is said to be in
"camera space". Careful comparison of the following three images shows there is a
problem with noise that uses a point defined in camera space. Although the
polygonal objects have been rotated, the "holes" created by 3D noise are in the
same location relative to the picture frame. For emphasis, one of the static features
is outlined in red.

Rotations of 40, 50 and 60 degrees

Th noise() function can calculate a value based on xyz values measured from the
origin of any coordinate system. The transform() function is used to convert a
location defined in one coordinate system into the corresponding location measured
in another coordinate system. The result of using a copy of point P that has been
transformed (re-measured) is that a visual effect based on 3D noise can be
"parented" to any (named) coordinate system. Listing 7 demonstrates the use of
the transform() function.

Listing 7

surface
noise_test4(float Kfb = 1,
 freq = 4, /* frequency of the noise */
 lo = 0.4,
 hi = 0.5;
 string space = "shader")
{
point pp = transform(space, P);
float ns = noise(pp * freq);
float blend = smoothstep(lo, hi, ns);

Page 73

Oi = blend;
Ci = Oi * Cs * Kfb;
}

Because the 3D noise is parented to "shader" space, which in this example is
effectively the same as "object" space, the irregular holes remain in fixed locations
relative to the stack of polygons - figure 7a.

Figure 7a

User Defined Coordinates Systems
In addition to using any of the four predefined space names ie. "camera", "world",
"object", and "shader", users can create custom coordinate systems with which
they can control a shader. Cutter's Rman Tools palette enables the rib statements
that define a coordinate system to be conveniently inserted into a rib file.

Figure 7b

TransformBegin
 Translate 0 0 0
 Rotate 0 1 0 0
 Rotate 0 0 1 0
 Rotate 0 0 0 1
 Scale 1 0.25 1
 CoordinateSystem "myspace"
TransformEnd
TransformBegin
 Surface "constant_test7" "Kfb" 1.0
 "freq" 1 "space" ["myspace"]
 ReadArchive "stack.rib"
TransformEnd

Using Cutter's drop-down menu to add a
custom coordinate system to a rib file and
accessing the custom coordinate system via
the shaders "space" parameter.

Figure 7c shows the effect of scaling a
user-defined coordinate system named
"myspace".

Page 74

Diffuse Illumination
The next set of shaders calculate the color of the diffuse illumination on a
micro-polygon. The diffuse, also known as Lambert, illumination is derived from the
angle between the surface normal and the (incident) ray of light striking a surface.
When a micro-polygon directly "faces" the incident light it receives maximum
illumination. When its normal makes an oblique angle to the incident light the
illumination on the micro-polygon diminishes (drops off) in proportion to the cosine
of the angle.

The diffuse() function "steps over" all the lights in a scene and returns a single
color that represents the combined diffuse illumination striking a micro-polygon.

Listing 8

surface
diffuse_test1(float Kd = 1,
 doFace = 1)
{
/* STEP 1 - make a unit copy of the surface normal */
normal n = normalize(N);
normal nf = n;

/* STEP 2 - force the surface normal to face the camera */
if(doFace)
 nf = faceforward(n, I);

/* STEP 3 - set the apparent surface opacity */
Oi = Os;

/* STEP 4 - calculate the diffuse lighting component */
color diffusecolor = Kd * diffuse(nf);

/* STEP 4 - calculate the apparent surface color */
Ci = Oi * Cs * diffusecolor;
}

The faceforward() function returns a copy of the true surface normal forced to
face the incident ray. The xyz coordinates of the incident ray are stored in the
global variable I. Because ray tracing is not being used the incident ray will always
be the camera ray, otherwise known as the viewing vector.

Page 75

The effect of not using faceforward() can be seen on the quadric sphere shown
below on the left. The darkness of the interior surface of the sphere represents the
diffuse illumination of the rear of the object. When an interior surface is viewed in
this way we are, in effect, viewing the front of the rear surface! Unless the stereo
rendering capabilities of Pixar's prman renderer are being used, it is traditional for
shaders always to flip their normals using the faceforward() function. In general,
the first two lines of code of a surface shader are usually these,

 normal n = normalize(N);
 normal nf = faceforward(n, I);

Figure 8
Illumination with and without the use of faceforward(n,I)

Cartoon Shading
High contrast or cartoon-like shading can be obtained by thresholding the diffuse
illumination. In the rendering shown in figure 9 values of diffuse less than 0.5 are
treated as if they were black. Values slightly higher ie. adjusted by the "blur"
parameter, are considered to be white. Using the smoothstep() function ensures
there is a narrow trasition zone of gray between the white and black areas.

Listing 9a

surface
cartoon_test1(float Kd = 1,
 midpoint = 0.5,
 blur = 0.02)
{
normal n = normalize(N);
normal nf = faceforward(n, I);
color surfcolor = 1;

/* Calculate the diffuse lighting component */
color diffusecolor = Kd * diffuse(nf);

/* Get the brightness of the diffuse lighting */
float value = comp(ctransform("hsv", diffusecolor), 2);

/* Apply a black and white cutoff around a "midpoint" */
color bw = smoothstep(midpoint, midpoint + blur, value);
Oi = Os;
Ci = Oi * Cs * surfcolor * bw;

Page 76

}

Figure 9a
Illumination with and without high contrast

Figure 9b
Banding using the mod() function

As a variation of the cartoon "theme" the next shader, listing 9b, applies a repeating
pattern to the threshold to produce a series of bands. For more information about
the use of the mod() function and repeat patterning refer to the tutorial, RSL:
Repeating Patterns.

Listing 9b

surface
cartoon_test2(float Kd = 1,
 midpoint = 0.5,
 blur = 0.2,
 repeats = 5)
{
normal n = normalize(N);
normal nf = faceforward(n, I);
color surfcolor = 1;

/* Calculate the diffuse lighting component */
color diffusecolor = Kd * diffuse(nf);

/* Get the brightness of the diffuse lighting */
float value = comp(ctransform("hsv", diffusecolor), 2);

/* Apply a repeat factor */
value = mod(value * repeats, 1);

/* Apply a black and white cutoff around a "midpoint" */
color bw = smoothstep(midpoint, midpoint + blur, value);
Oi = Os;
Ci = Oi * Cs * surfcolor * bw;
}

Inside/Outside Shading
Some unusual visual effects can be obtained by combining the high contrast

Page 77

shading of listings 9a/9b with the diffuse shading of listing 8. The next shader, listing
10, uses the high contrast values to alter the apparent opacity of a surface. In
effect, the shader causes the light that strikes a surface to behave like a
"cookie-cutter". However, the apparent surface color is not effected by the high
contrast but instead is shaded by the color returned from the diffuse() function.

Listing 10

surface
in_out_test1(float Kd = 1,
 midpoint = 0.5,
 blur = 0.2,
 repeats = 5)
{
normal n = normalize(N);
normal nf = faceforward(n, I);
color surfcolor = 1;

/* Calculate the diffuse lighting component */
color diffusecolor = Kd * diffuse(nf);

/* Get the brightness of the diffuse lighting */
float value = comp(ctransform("hsv", diffusecolor), 2);

/* Apply a repeat factor */
value = mod(value * repeats, 1);

/* Apply a black and white cutoff around a "midpoint" */
color bw = smoothstep(midpoint, midpoint + blur, value);

/* Modify the opacity */
Oi = bw * Os;

/* Use the regular diffuse color for the surface */
Ci = Oi * Cs * surfcolor * diffusecolor;
}

Figure 10
High contrast shading controls surface

opacity while diffuse shading is used for the
surface color.

Page 78

Texture Mapping
When a surface is texture mapped the 'st' coordinates of its micro-polygons are
used to sample a color from the corresponding 'st' location of an image. A slightly
blurred (anti-aliased) color sample from the image is returned as a single color by
the texture() function. The 'st' texture coordinates are equivalent to latitude and
longitude - figure 11a.

RenderMan's 'st' texture space is the equivalent to the 'uv' texture coordinates of
Maya and Houdini. Note, however, the origin of the 'st' space of the image is in the
top-left whereas for Maya and Houdini the origin of 'uv' space is in the lower-left
hand corner of an image.

Figure 11a
Texture coordinates, mapping from an image to a quadric cylinder.

With the introduction of Pixar's RenderMan Studio (RMS) the situation with regard to
the relative orientation of 'st' and 'uv' space is now different compared to the way
that 'st' was handled by their earlier product, RenderMan Artist Tools. Figure 11b
illustrates the issue of 'st' orientation for several Maya surfaces. It appears that
RMS is swapping the 's' and 't' axes!

Figure 11b
Left to Right

Page 79

Reading Texture Maps for Surface Coloration
The majority of RenderMan complient renderers do not directly use an image file for
texture mapping but insted require the file to be converted to a texture file. Texture
files contain representations of the original image at different scales. During
convertion the pixel data in the texture file is filtered and this, combined with the
texture files multiple images (mip maps), results in the renderer being able to
perform efficient anti-aliased texturing.

Most RenderMan complient rendering systems have a utility application that
converts images to textures. In the case of Pixar's system the utility is called
txmake. Cutter has a simple Texture Tool, figures 11e and 11f, that enables image
files to be converted and automatically saved to the users textures directory - refer
to section "Setting up User Paths" at the beginning of this tutorial.

Figure 11e

Figure 11f

Rather than using the Texture Tool it is often more convenient to execute a line of
text. For example, selecting the following line of text and using the keyboard short
cut Alt+e, Control+e or Apple+e is the same as executing the txmake command from
the command prompt, shell or terminal.

A comment at the beginning of a line is ignored when Cutter executes the text. Text
may also be broken over sever lines.

Listing 11 provides the code for the texture mapping shader used to render figure

Page 80

11b.

Listing 11

surface
texture_test1(float Kd = 1;
 string texname = "")
{
normal n = normalize(N);
normal nf = faceforward(n, I);
color surfcolor = 1;

if(texname != "")
 surfcolor = texture(texname);

Oi = Os;

color diffusecolor = Kd * diffuse(nf);
Ci = Oi * Cs * surfcolor * diffusecolor;
}

Using a Texture Map for Surface Opacity
The texture() function can return a color or a float. In the case of a float the value
corresponds to the red channel of the texture map. For example, the image shown in
figure 12a was used as a texture map to render the square polygon seen in figure
12b. The red shape and the white border have contributed full opacity while the green
and blue shapes have been ignored. The border is opaque because white has a red
channel value of 1.0.

Figure 12a Figure 12b

Listing 12

surface
texture_test2(float Kd = 1;
 string texname = "")

Page 81

{
normal n = normalize(N);
normal nf = faceforward(n, I);
color surfcolor = 1;

Oi = Os;
if(texname != "")
 Oi = float texture(texname) * Os;

color diffusecolor = Kd * diffuse(nf);
Ci = Oi * Cs * surfcolor * diffusecolor;
}

To ensure an opacity mapper, such as texture_test2 shown in listing 12, handles
a colored image map "properly" it would be better to use the average value of the
red, green and blue channels ie.

 if(texname != "") {
 color c = texture(texname);
 float ave = (comp(c, 0) + comp(c, 1) + comp(c, 2))/3;
 Oi = ave * Os;
 }

Page 82

RSL
Directional Light Source Shaders

Introduction

This tutorial focuses on some of the issues relating to the writing of directional light
source shaders ie. those that use the solar() shadeop. Some of the shaders
presented here demonstrate how data can be passed to custom surface shaders for
the purpose of producing secondary images - AOV's. The tutorial, "RenderMan:
AOVs - Secondary Images", provides an overview of this topic.

Before continuing the reader should refer to the tutorial "Cutter Setup: RenderMan
Shader Writing". It explains how to configure Cutter for shader writing. In particular,
the section, "Cutter's Open Shader Source Facility", should be reviewed because it
explains how Cutter can quickly access the source code of the shaders that ship with
different RenderMan compliant rendering systems.

For a brief description of how to use a custom light shader with RenderMan Studio
and Maya refer to the tutorial "RMS:Using Custom Light Source Shaders".

Parallel Illumination

Listing 1 shows a slightly modified version of Pixar's classic "distantlight" shader. It is
an example of a light source intended to mimic sunlight.

Listing 1 (basic_distant.sl)

light
basic_distant(float intensity = 1;
 color lightcolor = 1;
 point from = point "shader" (0,0,0);
 point to = point "shader" (0,0,1);
)
{
vector direction = to - from;
solar(direction, 0.0) {
 Cl = intensity * lightcolor;
 }
}

A rib file that implements a simple scene (figure 1) that can be used to test the
shader is given in listing 2.

Page 83

Figure 1

The reader should ensure the paths shown in red "point" to the directories in which
they store their custom shaders, textures and archive (pre-baked) rib files.

Listing 2 (basic_distant.rib)

Option "searchpath" "shader" "@:../shaders"
Option "searchpath" "texture" "../textures"
Option "searchpath" "archive" "../archives:Cutter_Help/templates/Rib"

Display "distant_test" "framebuffer" "rgba"
Format 400 250 1
Projection "perspective" "fov" 17
ShadingRate 2

Translate 0 -0.05 3
Rotate -30 1 0 0
Rotate 20 0 1 0
Scale 1 1 -1
WorldBegin
 TransformBegin
 LightSource "basic_distant" 2 "intensity" 1
 "from" [0 1 0] "to" [0 0 0]
 TransformEnd

 Surface "plastic"
 AttributeBegin
 Polygon "P" [-0.5 0 -0.5 -0.5 0 0.5 0.5 0 0.5 0.5 0 -0.5]
 "st" [0 0 0 1 1 1 1 0]
 Translate 0 0.35 0
 Sphere 0.15 -0.15 0.15 360
 AttributeEnd
WorldEnd

Setting a Fixed Direction

The first thing to note about the basic_distant shader is that it has two parameters that
enable it's direction to be adjusted. Modern directional lights are written on the assumption
they "face" toward negative Z. For example, the default direction of a Maya "directional"
light is shown in figure 2.

Page 84

Figure 2

In the case of Maya, the light's transform node (figure 3) enable its orientation to be
adjusted. A modified version of the basic_distant shader is shown below. Note the "from"
and "to" parameters have been removed and it's direction has been "hard wired" to be
negative Z.

Listing 3

light
basic_distant(float intensity = 1;
 color lightcolor = 1;
)
{
vector direction = vector "shader"(0, 0, -1);
solar(direction, 0.0) {
 Cl = intensity * lightcolor;
 }
}

The rib file, basic_distant.rib, should be edited so that two transformations provide the rib
"equivalent" of the transformations shown in figure 3.

 TransformBegin
 Translate 0 1 0
 Rotate -90 1 0 0
 LightSource "basic_distant" 2 "intensity" 1
 TransformEnd

Page 85

Figure 3

The "shader" Coordinate System

Note that in listings 1 & 2 the direction variable has been assigned xyz values in a
pre-defined coordinate system named "shader" ie.

 vector direction = vector "shader" (0,0,-1);

However, had the vector been declared as,

 vector direction = vector(0,0,-1);

it would would have been, by default, defined in the camera coordinate system ie.
"camera" space. In other words, the xyz values would be distances meaasured from the
origin of the camera. So, what is "shader" space and why has it been used?

The "shader" coordinate system is identical to the coordinate system that was active when
the light was instanced in the Rib file. Using "shader" space to define the direction vector,
in effect, "parents" the light to the coordinate system that was created by the
TransformBegin statement, and subsequently transformed by the Rotate and Translate
commands that appear immediately before the LightSource statement. Consequently,
only by defining the direction vector within the "shader" coordinate system will the light
"respond" to the transformations intended to orientate it. As an experiment, the reader
should reset the direction to,

 vector direction = vector(0,0,1);
or
 vector direction = vector "camera" (0,0,1);

The shader should be re-compiled and the scene re-rendered. Notice that no matter what
values are specified for the Rotate and Translate statements in the Rib file the
illumination of the scene remains constant. In particular, note the specular hilite on the
sphere (figure 4) indicates the illumination is coming from the camera.

Page 86

Figure 4

But it Does Not Work in Maya & Houdini!

If the reader assigns the shader from listing 3 to a directional light source in Maya,
using RenderMan Studio, or in Houdini they will see the illumination is reversed - a
downward facing light will illuminate the scene as if it were pointing upward! So why
does the shader behave correctly when tested with the rib file shown in listing 2 but not
when used in Maya or Houdini?

For reasons known only to the software engineers at Pixar and Side Effects their
products insert, into the rib stream, a negative scaling on the z-axis immediately prior to
instancing the light source shader. For example, the snippet shown below is from a rib
file generated by RenderMan for Maya Pro (RenderMan Studio).

 TransformBegin
 Attribute "identifier" "string name" ["directionalLightShape1"]
 Transform [1 0 -0 0 -0 0 -1 0 0 1 0 0 0 0 0 1]
 Scale 1 1 -1 # ???
 LightSource "basic_distant" "RenderManLight2"
 "float intensity" [1] "color lightcolor" [1 1 1]
 TransformEnd

As a consequence, for the shader to behave correcly with Maya or Houdini it is
necessary to declare the direction vector as pointing toward positive Z.

 vector direction = vector "shader" (0,0,1);

This means the transform block containing the light in listing 2 must also apply a
negative Z scaling.

 TransformBegin
 Rotate -90 1 0 0
 Scale 1 1 -1
 LightSource "basic_distant" 2 "intensity" 1
 TransformEnd

Thus proving that "two wrongs can make a right"!

The solar() Function

At the heart of a directional light source shader is the solar() function. The syntax
of the function is rather strange because it has a code block and as such it looks

Page 87

more like a a looping statement, such while() or for(), rather than a "regular" RSL
shadeop.

 solar(direction, 0.0) {
 Cl = intensity * lightcolor;
 }

There are two special global variables that can be accessed within the function's
block of code. It is the responsibility of the shader to assign a color to Cl - the output
light color. The second global, L, is a vector that specifies the direction from the light
source to the surface it is illuminating - the input light direction. However, L is not
used in the code sample shown above.

The value of the second parameter to solar is usually zero. The parameter specifies
the deviation angle between the rays. Hence, a value of zero indicates the rays of
light are parallel.

Listing 4

light
basic_distant(float intensity = 1;
 color lightcolor = 1;
 float angle = 0;
)
{
vector direction = vector "shader"(0,0,1);
solar(direction, radians(angle)) {
 Cl = intensity * lightcolor;
 }
}

In listing 4 an "angle" parameter has been added to the shader. The effect of
different values of "angle" are shown in figure 5. For moderate values of "angle" the
visual effect is to wrap the illumination around the sphere. However, for large values
of "angle" the wrapping becomes noticably "distorted".

Figure 5
"angle" from left to right: 0, 20, 40, 60 and 90 degrees

Shadows

Listing 5 demonstrates the use of the shadow() function to read a value from a
shadow map. Because the function returns 1.0 when the surface point is "in shadow"
and 0.0 when "not in shadow" the return value is subtracted from 1.0 before
modifying the output light color.

Listing 5 (shd_distant.sl)

Page 88

light
shd_distant(float intensity = 1;
 color lightcolor = color(1,1,1);
 string shadowname = "";
 float width = 1;
 float samples = 16)
{
vector direction = vector "shader" (0,0,1);
solar(direction, 0.0) {
 Cl = intensity * lightcolor;
 // Attenuate the output light color by the value
 // returned from a shadow (texture) map
 if(shadowname != "")
 Cl *= 1 - shadow(shadowname, Ps, "samples", samples, "width", width);
 }
}

The rib file shown below can be used to generate the two depth maps required for the beauty
pass render - listing 7.

Listing 6 (shadow_pass.rib)

Option "searchpath" "shader" "@:../shaders"
Option "searchpath" "texture" "../textures"
Option "searchpath" "archive" "../archives:Cutter_Help/templates/Rib"

PixelSamples 1 1
PixelFilter "box" 1 1
Hider "hidden" "jitter" [0]
Clipping 1 20
Format 512 512 1
Projection "orthographic"
ShadingRate 1

FrameBegin 1
 Display "./shd_map_80.tex" "shadow" "z"
 Translate 0 0 5
 Rotate -80 1 0 0
 Scale 1 1 -1
 WorldBegin
 AttributeBegin
 Translate 0 0.5 0
 Sphere 0.15 -0.15 0.15 360
 AttributeEnd
 AttributeBegin
 Polygon "P" [-0.5 0 -0.5 -0.5 0 0.5 0.5 0 0.5 0.5 0 -0.5]
 "st" [0 0 0 1 1 1 1 0]
 AttributeEnd
 WorldEnd
FrameEnd
FrameBegin 2
 Display "./shd_map_100.tex" "shadow" "z"
 Translate 0 0 5
 Rotate -100 1 0 0
 Scale 1 1 -1
 WorldBegin

Page 89

 AttributeBegin
 Translate 0 0.35 0
 Sphere 0.15 -0.15 0.15 360
 AttributeEnd
 AttributeBegin
 Polygon "P" [-0.5 0 -0.5 -0.5 0 0.5 0.5 0 0.5 0.5 0 -0.5]
 "st" [0 0 0 1 1 1 1 0]
 AttributeEnd
 WorldEnd
FrameEnd

Listing 7 (beauty_pass.rib)

Option "searchpath" "shader" "@:../shaders"
Option "searchpath" "texture" "../textures"
Option "searchpath" "archive" "../archives:Cutter_Help/templates/Rib"

PixelSamples 8 8
Display "./shadow_test" "framebuffer" "rgba"
Format 400 250 1
Projection "perspective" "fov" 17
ShadingRate 1

Translate 0 -0.05 3
Rotate -30 1 0 0
Rotate 20 0 1 0
Scale 1 1 -1
WorldBegin
 TransformBegin
 Rotate -85 1 0 0
 Scale 1 1 -1
 LightSource "shd_distant" 1 "string shadowname" ["./shd_map_80.tex"]
 "float intensity" 0.5 "float width" 4 "float samples" 32
 TransformEnd
 TransformBegin
 Rotate -95 1 0 0
 Scale 1 1 -1
 LightSource "shd_distant" 2 "string shadowname" ["./shd_map_100.tex"]
 "float intensity" 0.5 "float width" 4 "float samples" 32
 TransformEnd

 Surface "plastic"
 AttributeBegin
 Polygon "P" [-0.5 0 -0.5 -0.5 0 0.5 0.5 0 0.5 0.5 0 -0.5]
 "st" [0 0 0 1 1 1 1 0]
 AttributeEnd
 AttributeBegin
 Translate 0 0.35 0
 Sphere 0.15 -0.15 0.15 360
 AttributeEnd
WorldEnd

The beauty_pass.rib shown in listing 7 will generate the image shown below.

Page 90

Figure 6

Rendering a Shadow AOV

The shd_distant shader provides an opportunity to explore how data calculated by a
light source shader can be rendered into a secondary image. Although light shaders
can have parameters declared as output variables they cannot be used directly as a
source of data for secondary images. The data assigned to a light's output variables
can, however, be read by a surface shader and then assigned to its output variables.
Such outputs are known as AOVs - arbitrary output variables. The reader should
refer to the tutorial "RenderMan: AOVs - Secondary Images" for background
information on this topic.

Listing 8 is a slightly modified version of shd_distant. It has an extra parameter to
enable the color of the shadow to be adjusted. It also has an output parameter that is
assigned a float indicating the extent to which each micropolygon is in shadow.

Listing 8

light
shd_distant(float intensity = 1;
 color lightcolor = color(1,1,1);
 color shadowcolor = color(0,0,0);
 string shadowname = "";
 float width = 1;
 float samples = 16;
 output varying float __inshadow = 0)
{
vector direction = vector "shader" (0,0,1);
solar(direction, 0.0) {
 Cl = intensity * lightcolor;
 if(shadowname != "") {
 __inshadow = shadow(shadowname, Ps, "samples", samples, "width", width);
 Cl = mix(Cl, shadowcolor, __inshadow);
 }
 }
}

Because the shadow() function returns values in the range 0.0 to 1.0 it offers a
convenient way of using the mix() function to set the output color of the light source.

Page 91

Listing 9 gives the source of a surface shader that queries the light source output
variable __inshadow and assigns the value to its own (AOV) output variable. Unlike
the output variables of the light source, those of the surface shader can be used as
sources of data (AOVs) for secondary images.

Listing 9 (diffuseAOV.sl)

surface
diffuseAOV(float Kd = 0.5;
 output varying float _inshadow = 0)
{
normal n = normalize(N);
color diffusecolor = 0;
float accum_inshadow = 0, inshadow;
color accum_raw_Cl = 0, raw_Cl;

illuminance(P, n, PI/2) {
 if(lightsource("__inshadow", inshadow) == 1)
 accum_inshadow += inshadow;
 diffusecolor += Cl * normalize(L).n;
 }
// Clamp the _inshadow output
_inshadow = mix(0.0, 1.0, accum_inshadow);
Oi = Os;
Ci = Oi * Cs * diffusecolor * Kd;
}

The illuminance() loop

Although the diffuseAOV surface shader calculates the diffuse (Lambertian)
response of a surface to illumination, for simplicity, it ignores the ambient and
specular components. Unlike the the sample surface shaders in the tutorial, "RSL:
Writing Surface Shaders", it does not use the diffuse() function. Instead, it makes
use of the illuminance() function to accumulate its shading effect.

The illuminance() function executes its block of code for each light source in a
scene, if and only if, it determines the light is capable of contributing an illumination
value. That determination is based on the surface position (P), surface orientation (N)
and a cone within which it samples in-coming light - like a spot light but in "reverse".
A cone angle of PI/2 ensures that each micropolygon samples a 180 degree
hemisphere.

Page 92

Figure 7 (shadow_test._inshadow.tif)

Within the illuminance block, the lightsource() function is used to query each
light. If a light has a __inshadow variable its value is acculumated and finally
assigned to the surface shaders own output variable. Listing 10 will render the
secondary image shown in figure 7. The image contains an inverted mask of the
overlapping shadows.

Listing 10

Option "searchpath" "shader" "@:../shaders"
Option "searchpath" "texture" "../textures"
Option "searchpath" "archive" "../archives:Cutter_Help/templates/Rib"
PixelSamples 8 8
DisplayChannel "float _inshadow" "quantize" [0 255 0 255] "dither" [0.5]

Display "./shadow_test.tif" "framebuffer" "rgba"
Display "+./shadow_test._inshadow.tif" "tiff" "_inshadow"
Format 400 250 1
Projection "perspective" "fov" 17
ShadingRate 1

Translate 0 -0.05 3
Rotate -30 1 0 0
Rotate 20 0 1 0
Scale 1 1 -1
WorldBegin
 TransformBegin
 Rotate -80 1 0 0
 Scale 1 1 -1
 LightSource "shd_distant" 1 "string shadowname" ["./shd_map_80.tex"]
 "float intensity" 0.5 "float width" 4 "float samples" 32
 TransformEnd
 TransformBegin
 Rotate -100 1 0 0
 Scale 1 1 -1
 LightSource "shd_distant" 2 "string shadowname" ["./shd_map_100.tex"]
 "float intensity" 0.5 "float width" 4 "float samples" 32
 TransformEnd

 Surface "diffuseAOV"
 AttributeBegin

Page 93

 Polygon "P" [-0.5 0 -0.5 -0.5 0 0.5 0.5 0 0.5 0.5 0 -0.5]
 "st" [0 0 0 1 1 1 1 0]
 AttributeEnd
 AttributeBegin
 Translate 0 0.35 0
 Sphere 0.15 -0.15 0.15 360
 AttributeEnd
WorldEnd

If the reader has Pixar's RenderMan Pro-Server and RenderMan Studio installed on their
computer they can render both the beauty pass and the secondary images directly to an "it"
(Image Tool) catalog. For example,

 Display "./shadow_test.tif" "it" "rgba"
 Display "+./shadow_test._inshadow" "it" "_inshadow"

Figure 8
Otherwise, it is necessary to render the secondary image as a image file, for example,

 Display "./shadow_test" "framebuffer" "rgba"
 Display "+./shadow_test._inshadow.tif" "tiff" "_inshadow"

Occlusion Directional Light

The next illustration shows the "soft shadow" effect of a directional light that outputs a
color based on the use of the occlusion() shadeop. The QuickTime movie shown
below consists of a 60 frame animation of an occlusion light source, inclined at an
angle of 60 degrees, rotating 360 degrees around the Y-axis. The flickering of the
occlusion is caused by the compression of the QuickTime movie.

Page 94

Figure 9

The source code of the light source shader, and a rib file suitable for testing it, is shown
in listings 11 and 12.

Listing 11 (occlusionlight.sl)

light
occlusionlight(float intensity = 1,
 samples = 64,
 multiplier = 2,
 coneangle = 90;
 color lightcolor = 1)
{
vector direction = vector "shader"(0,0,1);
float occ;
solar(direction, 0.0) {
 occ = 1 - occlusion(Ps, -direction, samples,
 "coneangle", radians(coneangle));
 occ = pow(occ, multiplier);
 Cl = occ * intensity * lightcolor;
 }
}

The multiplier and coneangle parameters control the density and distribution of the
occlusion. However, to avoid artifacts it may be necessary to adjust the trace "bias" in
the rib file.

Listing 12 (occlusionlight.rib)

Option "searchpath" "shader" "@:../shaders"
Option "searchpath" "texture" "../textures"
Option "searchpath" "archive" "../archives:Cutter_Help/templates/Rib"

Display "occlusionlight" "it" "rgba"
Format 400 240 1
Projection "perspective" "fov" 15
ShadingRate 1

Translate 0 0 3
Rotate -30 1 0 0

Page 95

Rotate 0 0 1 0
Scale 1 1 -1
WorldBegin
 Attribute "visibility" "trace" [1]
 LightSource "ambientlight" 1 "intensity" 0.15
 TransformBegin
 Rotate 0 0 1 0
 Rotate -60 1 0 0
 Scale 1 1 -1
 LightSource "occlusionlight" 2 "intensity" 0.8
 "multiplier" 3 "samples" 1024 "coneangle" 90
 TransformEnd
 Surface "plastic" "Kd" 0.9 "Ks" 0
 AttributeBegin
 Attribute "trace" "float bias" [0.001]
 Scale 0.3 0.3 0.3
 ReadArchive "pCube.rib"
 AttributeEnd
 AttributeBegin
 Polygon "P" [-0.5 0 -0.5 -0.5 0 0.5 0.5 0 0.5 0.5 0 -0.5]
 "st" [0 0 0 1 1 1 1 0]
 AttributeEnd
WorldEnd

Rim Lighting

The tutorial "RSL:Edge Effects" demonstrated the use of the dot product to create
fake rim lighting. Incidently, the same vector arithmetic is used by Maya's
(HyperGraph) "facing ratio" node. Listing 9 (diffuseAOV.sl) also uses the dot product
to scale the apparent intensity of the (Lambertan or diffuse) illumination received by
a surface. However, the two vectors it uses are not those of the (reversed) view
vector and the surface normal but the (reversed) light direction and the surface
normal. In other words, what is referred to as Lambertian or diffuse illumination is the
result of mulitplying the facing ratio of the light source by its color. Perhaps the
illuminance loop used by the diffuseAOV shader should be re-written to make the
use of the dot product more apparent ie.

 illuminance(P, n, PI/2) {
 float facing_ratio = normalize(L).n;
 diffusecolor += Cl * facing_ratio;
 }

The next shader (listing 13) modifies the output color of a light by the dot product
(aka facing ratio) of the surface normal and the view vector. However, because this
is implemented by a directional light source the rim effect can be controlled by a
lighting artist rather than a shading artist!

Page 96

Figure 10

Listing 13 (distantrimlight.sl)

light
distantrimlight(float intensity = 1,
 width = 0.6;
 color lightcolor = 1)
{
vector direction = vector "shader"(0,0,1);
vector i = normalize(-I);
normal n = normalize(N);
normal nf = faceforward(n, I, n);
float dot = nf.i;
float rim = smoothstep(1.0 - width, 1.0, 1 - dot);

solar(direction, 0.0) {
 Cl = intensity * lightcolor * rim;
 }
}

Light Wrapping

This section is based on the Siggraph 2002 paper, "Renderman on Film" by Rob
Bredow (Sony Pictures Imageworks). In his paper the author demonstrates the
principles of a shading technique they used in the production of the movie "Stuart
Little 2". Their system gave the illusion that illumination from a light source appeared
to wrap around the curved surfaces of their characters as if they were lit by an area
light source.

Figure 11
Standard Illumination

Figure 12
Wrapped Illumination

Page 97

Although the Siggraph paper explained their light-wrapping technique it did not
provide the source code of their custom shaders. Consequently, the shaders given in
listings 14 and 15 are, almost certainly, substantially different to those developed at
Sony.

The Maths

Figure 13 shows four micropolygons, labeled a, b, c and d, on a sphere that is
illuminated by a downward pointing directional light. The red lines represent vectors
pointing toward the light source while the green lines represent the surface normals
of each micropolygon. The dot product of the vectors and the normals at each of the
sampled points is also given along with a "reminder" that the dot product represents
the cosine of the angle between the vectors. For convenience, the angles are shown
in degrees rather than in radians.

Figure 13

A "regular" surface shader ie. no light wrapping, would assign maximum illumination
to the micropolygon at point a and minimum illumination to point b. The terminator
between light and dark would occur along the "equator" of the sphere. However, a
surface shader that wraps by, say, 45 degrees would "push" the terminator to point c.

The Role of the Surface Shader

Diffuse illumination is calculated by a surface shader either indirectly using the
diffuse() shadeop or directly within an illuminance loop. For example,

 color diffusecolor = 0;
 illuminance(P, n, PI/2) {
 diffusecolor += Cl * normalize(L).n;
 }

In figure 13 the "light" vector (L) is represented by the normalized l vector. An
illuminance loop usually samples a hemisphere (PI/2) and, as such, the loop skips

Page 98

those micropolygons that "face away" from a light source. Consequently, negative
values of the dot product are avoided. To implement light wrapping, the illuminance
loop must perform full spherical sampling (PI not PI/2). Figure 13 shows that for a
wrap angle of 45 degrees the illumination must drop to 0.0 not at 'b' but instead at
'c'. The values, derived from the dot product, in the range 1.0 to -0.707, must be
remapped to the range 1.0 to 0.0. The illuminance loop shown below performs the
required remapping.

illuminance("wrapper", P, n, PI) {
 lightsource("wrapAngle", wrap_angle);
 l = normalize(L);
 float dot = n.l;
 float minDot = cos(radians(90 + wrap_angle));
 float clamped = clamp(dot, minDot , 1.0);
 float illum = (clamped - minDot)/(1.0 - minDot);
 diffuseColor += Cl * illum;
 }

The Role of the Light Source Shader

Although light wrapping must be applied by a surface shader, it makes sense in a
studio for the wrap_angle to be determined by the lighting artists ie. controlled by the
light sources in a scene. Note that in listing 14 the illuminance loop queries the
__category name of each light. Only those lights tagged as "wrapper" will be
processed within the loop. The light shader in listing 15 has a "dummy" parameter
named "wrapAngle". While it is not used by the shader it is present in the parameter
list of the light so that it can be queried within the illuminance loop of the surface
shader. This enables multiple instances of the wrapperlight to apply different
"wrappings".

Listing 14 (wrappersurf.sl)

surface
wrappersurf(float Ka = 1,
 Kd = 0.6,
 Ks = 0.8,
 roughness = 0.1)
{
normal n = normalize(N);
vector l, i = normalize(-I);
color ambientcolor = ambient() * Ka;
color diffuseColor = 0, specColor = 0;
float wrap_angle, dot, minDot, clampedDot, illum;

illuminance("wrapper", P, n, PI) {
 lightsource("wrapAngle", wrap_angle);
 l = normalize(L);
 dot = n.l;
 minDot = cos(radians(90 + wrap_angle));
 clampedDot = clamp(dot, minDot , 1.0);
 illum = (clampedDot - minDot)/(1.0 - minDot);
 diffuseColor += Cl * illum;
 }

// Handle the non-wrapping lights
illuminance("-wrapper", P, n, PI/2) {

Page 99

 vector l = normalize(L);
 diffuseColor += Cl * l.n;
 specColor += Cl * specularbrdf(l, n, i, roughness);
 }
diffuseColor *= Kd;
specColor *= Ks;

Oi = Os;
Ci = Oi * Cs * (ambientcolor + diffuseColor + specColor);
}

Listing 15 (wrapperlight.sl)

light
wrapperlight(float intensity = 1;
 color lightcolor = 1;
 string __category = "wrapper";
 float wrapAngle = 0)
{
vector direction = vector "shader"(0,0,1);
solar(direction, 0.0) {
 Cl = intensity * lightcolor;
 }
}

Listing 16 (wrapper.rib)

Option "searchpath" "shader" "@:../shaders"
Option "searchpath" "texture" "../textures"
Option "searchpath" "archive" "../archives:Cutter_Help/templates/Rib"

Display "wrap_test" "framebuffer" "rgba"
Format 400 250 1
Projection "perspective" "fov" 17
ShadingRate 1

Translate 0 0 7
Rotate 0 1 0 0
Rotate 0 0 1 0
Scale 1 1 -1
Imager "background" "background" [1 1 1]
WorldBegin
 TransformBegin
 Rotate -90 1 0 0
 Scale 1 1 -1
 LightSource "wrapperlight" 1 "wrapAngle" 45
 TransformEnd
 TransformBegin
 LightSource "spotlight" 2 "intensity" 5 "from" [1 5 2] "to" [0 0 0]
 TransformEnd
 AttributeBegin
 Surface "wrappersurf"
 Sphere 1 -1 1 360

Page 100

 AttributeEnd
WorldEnd

Volumetric Fog Effects

This section introduces the use of a very simple volume shader that works in
conjunction with a "tagged" custom directional light source. Strickly speaking, the
volumetric fog effects shown in figure 14 do not require a custom light. However,
assigning a __category parameter to the custom light enables instances of the
shader to control the effects created by the volume shader. Some what like the
techniques used in the previous section, the light source could pass (noise) values to
the volume shader for the purpose, say, of making the fog look more interesting.

Figure 14

Immediately after a surface shader has determined the apparent color and opacity of
a micropolygon a volume shader can modify the micropolygon's color in order to
create the illusion that a scene is partially or fully filled with a medium such as water,
fog or smoke. For example, the volume shader shown in the next listing steps along
the viewing vector (I) from point P ie. the location of the micropolygon currently
being shaded, towards the camera. At each step along the vector it calculates its
current position (currP) so that the illuminance function can sample the light arriving
at that location. An average of the total illumination accumulated along the I vector
is then added to Ci.

Page 101

Figure 15

Listing 17 (mkfog.sl)

volume mkfog (float step = 0.025)
{
float totalDist = length(I);
point currP;
float stepCount = 1;
color totalC = 0;

// Jitter the starting point
float currDist = random() * step;
vector deltaI = 1.0/totalDist * I;

while(currDist <= totalDist) {
 currP = P - currDist * deltaI;
 illuminance ("foglight", currP) {
 totalC += Cl;
 }
 currDist += step;
 stepCount += 1;
 }
Ci = Ci + totalC/stepCount;
}

The code for a light source that works in conjunction with the volume shader is
shown next.

Listing 18 (distantFoglight.sl)

light distantFoglight(
 string shadowname = "";
 float intensity = 1;
 color lightcolor = 1;
 uniform string __category = "foglight")
{
vector direction = vector "shader" (0,0,1);

Page 102

solar(direction, 0.0) {
 Cl = intensity * lightcolor;
 if (shadowname != "")
 Cl *= (1 - shadow(shadowname, Ps, "samples", 64,
 "swidth", 1, "twidth", 1));
 }
}

The two frame rib file that can be used to test the shaders is given next.

Listing 19

FrameBegin 1
 PixelSamples 1 1
 Hider "hidden" "jitter" [0]
 Display "null" "null" "z"
 Display "+./distantshadow2.tex" "deepshad" "deepopacity" "string filter" ["box"]
 "float[2] filterwidth" [1 1]
 Format 512 512 1
 Projection "orthographic"
 ShadingRate 1

 Translate 0 0 5
 Rotate -90 1 0 0
 Scale 1 1 -1
 WorldBegin
 AttributeBegin
 Translate 0 0.5 -0.5
 Rotate 90 1 0 0
 Polygon "P" [-0.5 0 -0.5 -0.5 0 0.5 0.5 0 0.5 0.5 0 -0.5]
 AttributeEnd
 AttributeBegin
 Translate 0 0.5 0
 Sphere 0.15 -0.15 0.15 360
 AttributeEnd
 AttributeBegin
 Polygon "P" [-0.5 0 -0.5 -0.5 0 0.5 0.5 0 0.5 0.5 0 -0.5]
 AttributeEnd
 WorldEnd
FrameEnd
FrameBegin 2
 Option "shadow" "float bias" [0.1]

 Display "./volume_test" "it" "rgba"
 Format 350 350 1
 Projection "perspective" "fov" 17
 ShadingRate 1

 Translate 0 -0.5 4
 Rotate -0.5 1 0 0
 Rotate 0 0 1 0
 Scale 1 1 -1
 WorldBegin
 Atmosphere "mkfog" "float step" 0.025
 TransformBegin

Page 103

 Translate 0 0 0
 Rotate -90 1 0 0
 Scale 1 1 -1
 LightSource "distantFoglight" 2 "intensity" 0.35
 "string shadowname" ["./distantshadow2.tex"]
 TransformEnd
 Surface "plastic" "Kd" 0.6
 AttributeBegin
 Translate 0 0.5 -0.5
 Rotate 90 1 0 0
 Polygon "P" [-0.5 0 -0.5 -0.5 0 0.5 0.5 0 0.5 0.5 0 -0.5]
 AttributeEnd
 AttributeBegin
 Translate 0 0.5 0
 Sphere 0.15 -0.15 0.15 360
 AttributeEnd
 AttributeBegin
 Polygon "P" [-0.5 0 -0.5 -0.5 0 0.5 0.5 0 0.5 0.5 0 -0.5]
 AttributeEnd
 WorldEnd
FrameEnd

Page 104

RSL
Writing Displacement Shaders

Overview
Displacement shaders alter the smoothness of a surface, however, unlike bump
mapping which mimics the appearance of bumpiness by reorientating surface
normals, displacement shading genuinly effects the geometry of a surface. In the
case of Pixars prman renderer, each object in a 3D scene is sub-divided into a fine
mesh of micro-polygons after which, if a displacement shader has been assigned
to an object, each micro-polygon is "pushed" or "pulled" in a direction that is parallel
to the original surface normal of the micro-polygon. After displacing the
micro-polygon the orientation of the local surface normal (N) is recalculated.

Figure 1

The following algorithm lists the four basic steps that a displacement shader
generally follows in order to set the position (P) and normal (N) of the micro-polygon
being shaded.

1 Make a copy of the surface normal (N) ensuring it is one unit in
length.

2 Calculate an appropriate value for the displacement - what will
be referred to in these notes as the hump factor!

3 Calculate a new position of the surface point "P" by moving it
"along" the copy of the surface normal by an amount equal to
hump scaled by the value of the instance variable Km.

4 Recalculate the surface normal (N).

To make a meaningful decision about the distance, if any, a micro-polygon should
be displaced, a shader may make reference to the micro-polygon's,

2D surface position s, t, u, v,

Page 105

3D xyz position P,
orientation N,
camera distance L.

plus other less obvious attributes of a micro-polygon. Such information is either
directly or indirectly available in data the renderer makes available to a shader
through the use of global variables.

Displacement Shaders & Global Variables
The following table lists the global variables accessible to a displacement shader.
For the corresponding list of global variables available to a surface shader refer to
the tutorial "RSL: What is a Surface Shader".

Global
variable

P
N

s, t
Ng
u,v

du, dv
dPdu,dPdv

I
E

Meaning
surface position
surface geometric normal
surface texture coordinates
surface geometric normal
surface parameters
change in u, v across the surface
change in position with u and v
camera viewing direction
position of the camera

Using Cutter for Shader Writing
It is highly recommended the reader use Cutter for their shader writing. It has many
very useful time saving features. Refer to the tutorial "Cutter: Shader Writing" for
information about Cutter and how it should be set up.

Basic Code
The experiments on displacement shading in this tutorial are based the shader
shown in listing 1.

Listing 1

displacement
test1(float Km = 0.1)
{
float hump = 0;
normal n;

/* STEP 1 - make a copy of the surface normal */
n = normalize(N);

/* STEP 2 - calculate the displacement */
hump = 0;

/* STEP 3 - assign the displacement to P */

Page 106

P = P - n * hump * Km;

/* STEP 4 - recalculate the surface normal */
N = calculatenormal(P);
}

Texture Coordinates
Although micro-polygons have 3D xyz positions, given by the global variable P,
they also have a 2D position in 'st' texture space. Irrespective of their actual size,
nurbs and quadric surfaces cover exactly 1 unit in 's' and 't'.

Figure 2

Use Cutter's Rman Tool palette to generate a rib file to test your shaders - figure 3.
The poly-plane is set up to also cover one unit in texture space ie.

 Polygon "P" [-0.5 0 -0.5 -0.5 0 0.5 0.5 0 0.5 0.5 0 -0.5]
 "st" [0 0 0 1 1 1 1 0]

Figure 3

The first shader, listing 2, uses a simple "if" test to decide whether a
micro-polygon is within a narrow band.

Listing 2

Page 107

displacement
test2(float Km = 0.1)
{
float hump = 0;
normal n = normalize(N);

if(t >= 0.4 && t <= 0.6)
 hump = 1;

P = P - n * hump * Km;
N = calculatenormal(P);
}

Figure 4

The edge of the raised band is aliased. For the moment we will ignore the defect.
The next shader uses the RSL distance() function to determine if a micro-polygon
is within a distance defined by the shader parameter radius.

Listing 3

displacement
test3(float Km = 0.1,
 radius = 0.3)
{
float hump = 0;
normal n = normalize(N);
float d = distance(point(0.5,0.5,0), point(s, t, 0));

if(d <= radius)
 hump = 1;

P = P - n * hump * Km;
N = calculatenormal(P);
}

Again, the aliased rim of the circle will be ignored.

Page 108

Figure 5

Smoothstep
The shader in listing 4 uses the RSL smoothstep() function to soften the edge of
the circular displacement. It also provides an extra shader parameter to control the
width of the softening. For more information about the use of the smoothstep()
function refer to the tutorial "RSL: Using Smoothstep".

Listing 4

displacement
test4(float Km = 0.1,
 radius = 0.3,
 blur = 0.04)
{
float hump = 0;
normal n = normalize(N);
float d = distance(point(0.5,0.5,0), point(s, t, 0));

hump = 1 - smoothstep(radius - blur, radius + blur, d);

P = P - n * hump * Km;
N = calculatenormal(P);
}

Figure 6

Listing 5 provides additional parameters, s_center and t_center, to control the
placement of the circle.

Page 109

Listing 5

displacement
test5(float Km = 0.1,
 radius = 0.1,
 blur = 0.04,
 s_center = 0.25,
 t_center = 0.25)
{
float hump = 0;
normal n = normalize(N);
float d = distance(point(s_center,t_center,0),point(s,t,0));

hump = 1 - smoothstep(radius - blur, radius + blur, d);

P = P - n * hump * Km;
N = calculatenormal(P);
}

Figure 7

Displacement Mapping
The shader in listing 6 implements simple image embossing. Although the
texture() can return a float the value represents only the red channel of the
image. Unfortunately, it is not an average of the "rgb" channels. For this reason the
shader calculates the average "rgb" value. Strickly speaking, the shader should
calculate the grayscale value but taking a simple average is good enough.

Listing 6

displacement
test6(float Km = 0.1;
 string texname = "")
{
float hump = 0;
normal n = normalize(N);

if(texname != "") {
 color c = texture(texname);

Page 110

 hump = (comp(c, 0) + comp(c, 1) + comp(c, 2))/3;
 }

P = P - n * hump * Km;
N = calculatenormal(P);
}

Figure 8

The shader was used in the rib file in the following way.

 Displacement "test6" "texname" ["swazi.tx"] "Km" -0.20

The texture file "swazi.tex" was converted from the image shown in figure 9. For
more information about converting tif files to textures refer to the tutorial "Writing
Surface Shaders".

Figure 9

Noise I
The next shader uses the RSL noise() function to create a bumpy surface. For
more information about this function refer to the tutorials "Using Noise" and "Writing
Surface Shaders".

Listing 7

Page 111

displacement
test7(float Km = 0.1,
 s_freq = 6,
 t_freq = 8)
{
float hump = 0;
normal n = normalize(N);

hump = noise(s * s_freq, t * t_freq);

P = P - n * hump * Km;
N = calculatenormal(P);
}

Figure 10

Because the inputs to the noise() function are 's' and 't' the bumps are "parented"
to the texture space of the surface and as such will move with the object. In other
words the bumps will not appear to slide or move over the surface. If movement of
the bumps is required it can be done in two ways. Listings 8 and 9 address this
issue.

Animated 'st' Noise
The shader in listing 8 applies an offset to the 's' and 't' values before they are
scaled by their respective frequency parameters. The bumps can be animated
incremently increasing the s_offset and/or t_offset on a frame-by-frame basis.
For information about Cutter's keyframing capabilities refer to the tutorial
"KeyFraming"

Listing 8

displacement
test8(float Km = 0.1,
 s_freq = 6,
 s_offset = 0,
 t_freq = 8,
 t_offset = 0)
{
float hump = 0;
normal n = normalize(N);

Page 112

hump = noise((s - s_offset) * s_freq,
 (t - t_offset) * t_freq);

P = P - n * hump * Km;
N = calculatenormal(P);
}

The banding seen in figures 11 and 12 are caused by a defect in the (Perlin) noise
function. In theory the displacements should be smooth in all directions but there
are discontinuities at the integer lattice. The defect is particularly noticable with
large displacements.

Figure 11
s_offset = 0.0

Figure 12
s_offset = 0.1

Animated 3D Noise
The shader in listing 9 uses a micro-polygons xyz position (P) as an input to
noise(). Unlike the previous shader in listing 8 that supplied two inputs, and hence
produced 2D noise, the current shader generates true 3D noise. The shader was
applied to a cubic stack of poly-planes from which a spherical hole "gouged out"
with a special purpose surface shader. The variations in displacement caused by
the 3D noise can clearly be seen.

Page 113

Figure 13

Listing 9

displacement
test9(float Km = 0.1,
 freq = 1)
{
float hump = 0;
normal n = normalize(N);

hump = noise(P * freq);

P = P - n * hump * Km;
N = calculatenormal(P);
}

The principle issue with the shader is that point 'P' is defined in "camera space".
Consequently, the noise is "parented" to the camera - movements of the camera
will move the noise! Refer to the tutorial "Writing Surface Shaders" for a more
information about coordinate systems.

To ensure an artist has control over 3D noise the next shader enables point 'P' to
be transformed into either a pre-existing or a user-defined coordinate system. The
pre-existing coordinate systems are "camera", "world", "object" and "shader".
However, as shown next a user-defined coordinate system can be established with
the CoordinateSystem rib statement.

Listing 10a

displacement
test10(float Km = 0.1,
 freq = 1;
 string space = "object")
{
float hump = 0;
normal n = normalize(N);

point p = transform(space, P);
hump = noise(p * freq);

P = P - n * hump * Km;
N = calculatenormal(P);
}

Page 114

Figure 14

 Displacement "test10" "space" ["object"]

Figure 15

 Displacement "test10" "space" ["myspace"]

The rib file used to render figure 15 defined a user-defined coordinate system as
follows.

Listing 10b

 TransformBegin
 Translate 0 0 0
 Rotate 0 1 0 0
 Rotate 0 0 1 0
 Rotate 0 0 0 1
 Scale 0.25 1 1
 CoordinateSystem "myspace"
 TransformEnd
 Displacement "test10" "space" ["myspace"] "Km" -0.50 "freq" 1

Turbulance
A simulation of turbulance or fractal noise can be achieved by using the noise()
within a loop. On each iteration of the loop the value returned from noise() is added
to the result of the previous iteration. Successfully higher frequencies but smaller
amplitudes are used for iteration. The visual result is richer because the shading
can appear to mimic natural surfaces ie. large bumps have small bumps which in

Page 115

turn have enen smaller

Listing 11a

displacement
test11a(float Km = 0.1,
 freq = 1,
 layers = 3;
 string space = "object")
{
float hump = 0;
normal n = normalize(N);
point p = transform(space, P);
float j, f = freq, amplitude = 1;

for(j = 0; j < layers; j += 1) {
 hump += noise(p * f) * amplitude;
 f *= 2;
 amplitude *= 0.5;
 }

P = P - n * hump * Km;
N = calculatenormal(P);
}

The problem with applying a displacement directly with the value returned from
noise() is that the displaced surface moves away from its original position. This
"side-effect" is made worse when a number of displacements are summed. For
example, in figure 16 the lower poly-plane marks the starting position for the
displaced polygon. In figure 17 an adjustment has been made to the shader so that
on average the displaced surface is 50% above and below its original location.

Figure 16 Figure 17

In listing 11b a constant value of 0.5 is substracted from the noise value. In general it is
a good idea to always subtract 0.5 from noise.

Listing 11b

displacement
test11b(float Km = 0.1,

Page 116

 freq = 1,
 layers = 3;
 string space = "object")
{
float hump = 0;
normal n = normalize(N);
point p = transform(space, P);
float j, f = freq, amplitude = 1;

for(j = 0; j < layers; j += 1) {
 hump += (noise(p * f) - 0.5) * amplitude;
 f *= 2;
 amplitude *= 0.5;
 }

P = P - n * hump * Km;
N = calculatenormal(P);
}

Figure 18
From left to right - "layers" 3, "layers" 4 and "layers" 5

Some interesting visual effects can also be created by ensuring the value returned from
noise() is always positive. Listing 11c uses the abs() function to create the effect seen
in figure 19.

Listing 11c

displacement
test11c(float Km = 0.1,
 freq = 1,
 layers = 3;
 string space = "object")
{
float hump = 0;
normal n = normalize(N);
point p = transform(space, P);
float j, f = freq, amplitude = 1;

for(j = 0; j < layers; j += 1) {
 hump += abs(noise(p * f) - 0.5) * amplitude;
 f *= 2;
 amplitude *= 0.5;

Page 117

 }

P = P - n * hump * Km;
N = calculatenormal(P);
}

Figure 19

Ripples
Listing 3 demonstrated the use of the RSL distance() function to calculate the
distance between to points. Figure 20 shows a method that uses the theorem of
Pythagoras to also calculate the straight line distance between two points. One
point is defined by the coordinates a,b and the other by s,t. In listing 12 the first
coordinates will define the center of a ripple while the second coordinates are those
for the micro-polygon that is being shaded.

Listing 12a

displacement ripple1(float Km = 0.03,
 numripples = 8,
 a = 0.3,
 b = 0.25)
{
float sdist = s - a,
 tdist = t - b,
 dist = sqrt(sdist * sdist + tdist * tdist),
 hump = sin(dist * 2 * PI * numripples);

normal n = normalize(N);

P = P - n * hump * Km;
N = calculatenormal(P);
}

Page 118

Figure 20

Ripples in a pool of water, say as the result of a drop of rain, normally propogate
outward as 2 or 3 concentric waves. Listing 12b applies a constraint on the ripples
seen in figure 20 in order to mimic the rain-drop effect. The constraint is based on a
double use of the smoothstep() function. For more information about this RSL
function refer to the tutorial "RSL: Using smoothstep".

Listing 12b

displacement ripple1(float Km = 0.03,
 numWaves = 12,
 a = 0.3,
 b = 0.25,
 rippleRad = .5,
 rippleWidth = 0,
 rippleFade = 0.13)
{
float sdist = s - a,
 tdist = t - b,
 dist = sqrt(sdist * sdist + tdist * tdist),
 hump = sin(dist * 2 * PI * numWaves);

float w = rippleWidth/2;
float inner = rippleRad - w;
float outer = rippleRad + w;
hump = hump * smoothstep(inner - rippleFade, inner, dist) *
 (1 - smoothstep(outer, outer + rippleFade, dist));
normal n = normalize(N);
P = P - n * hump * Km;
N = calculatenormal(P);
}

Figure 21

Page 119

RSL
Using smoothstep

Introduction
The function smoothstep() is part of the maths library of shading language
functions. Given three values, min, max and input, the function will return a number
between 0 and 1 that represents the relationship of the input value to the min and
max values.

If input is less than min, smoothstep() will return 0.
If input is equal to, or larger than max, smoothstep() will return 1.
If input is between min and max, smoothstep() will return a value (proportionately)
between 0 and 1.0.

For example, suppose the min and max values are 0.3 and 0.6. Using the
smoothstep function with input values of 0.4 and 0.8 we get output values of 0.35
and 1.0.

smoothstep(0.3, 0.8, 0.4);

smoothstep(0.3, 0.8, 0.8);

Applying Smoothstep
As shown on the right the smoothstep function can be used to control the
blending colors or a displacement. The code for the displacement shader is
shown in listing 1.

Figure 1 smoothcolor.sl

Page 120

Figure 2 smoothbump.sl

Listing 1

displacement
smoothbump(float Km = 0.1,
 min = 0.3,
 max = 0.8)
{
float hump = smoothstep(min, max, t);
normal n = normalize(N);

P = P - n * hump * Km;
N = calculatenormal(P);
}

Combining Smoothsteps - part 1
Often a shader must control a blending factor by smoothly increasing and
decreasing an effect. For example, in the case of the displaced cylinder the
min and max values might be used to define locations where a displacement
is ramped-up then ramped-down.

The trick here is to notice that subtracting the values returned from the
smoothstep() function from 1.0 has the effect of inverting its effect ie. the
output values decrease from 1.0 to 0. A combined blending effect can be
obtained by,

blend = smoothstep(0.2, 0.3, t) * (1 - smoothstep(0.6, 0.7, t);

Figure 3

Page 121

Figure 4 smoothcolor2.sl Figure 5 smoothbump2.sl

Combining Smoothsteps - part 2
The double ramping seen in the previous section can also be achieved in two
directions, say, in 's' and the 't'.

blend = smoothstep(0.2, 0.3, s) * (1 - smoothstep(0.6, 0.7, s) *
 smoothstep(0.2, 0.3, t) * (1 - smoothstep(0.6, 0.7, t);

Figure 6 smoothcolor3.sl Figure 7 smoothbump3.sl

Page 122

RSL
Using noise

Variety
The shading language incorporates many useful maths functions that can be used
to generate visual effects such as bumpiness and variations in color. Maths
functions, however, produce visual effects that look unnaturally smooth and
regular. The noise() function can be used to add variations to a visual effect. The
noise function can be considered to be a black-box number generator. Irrespective
of the magnitude of its inputs, the output values from the noise() function are, in
theory, always in the range 0 to 1. In practice the output values are generally in the
range 0.27 to 0.7.

Figure 1 - the "noise" machine!

Figure 2 - a plot of noise values

Frequency & Amplitude
In a displacement shader noise might be used to effect the bumpiness of a surface
in say the 's' direction, for example,

Figure 3

Page 123

Because the default values of 's' range from 0 to 1 the resulting frequency of the
noise is low. This can been seen in figure 3 where there is only a couple of peaks
and valleys along the first part of the line segment. A poly plane displaced by,

 hump = noise(s);

is shown in figure 4.

Figure 4 Figure 5

To increase the frequency of the output values (from the noise function) the input
values are scaled, for example,

A poly plane displaced by,

 hump = noise(s * 5);

is shown in figure 5. To control the amplitude of the noise its output value can be
scaled. In the line of code shown below the difference in height between the valleys
and peaks is reduced by approximately a third ie.

 hump = noise(s * 5) * 0.3;

Figures 4 and 5 are examples of one-dimensional noise.

2D Noise
The noise() function also accepts two input values, for example,

 hump = noise(s * 5, t * 5) * 0.3;

Using two values generates two-dimensional noise.

Page 124

Figure 6

Listing 1 shows that replacing the constant values (5 and 0.3) with the instance
variables, freq and amp, makes the shader more flexible because those
parameters can be set in the rib file.

Listing 1

displacement
basic_2d_noise(float Km = 0.1,
 freq = 5,
 amp = 1)
{
float hump = 0;
point n = normalize(N);

hump = noise(s * freq, t * freq) * amp;

P = P - n * hump * Km;
N = calculatenormal(P);
}

3D Noise
The noise function also accepts a three-dimensional input. For example, we could
use the global variable P that references the xyz coordinates of the point that is
currently being displaced by a shader.

Figure 7

Listing 2

displacement
basic_3d_noise(float Km = 0.1,
 freq = 5,
 amp = 1)
{
float hump = 0;

Page 125

point n = normalize(N);

hump = noise(P * freq) * amp;

P = P - n * hump * Km;
N = calculatenormal(P);
}

Sticky 3D Noise
A problem arises when using the global variable P as a source of data because its
xyz coordinates are, by default, measured relative to the camera. In other words, P
is in the camera coordinate system. Therefore, changing the distance or
orientation of the world relative to camera causes the surface to appear to slide
over stationary bumps. Three frames of an animation are shown in figure 8. Note
that despite the rotation of the polyplane the "feature" shown in red remains fixed in
the same position relative to the picture frame. In other words the noise is, in effect,
parented to the camera!

Figure 8

Figure 9

To make the displacements "stick" to the surface of the polyplane, point P should
not be used directly but instead a copy of its data, transformed into "object" or
"shader" (coordinate system) space, is used instead. Listing 3 gives an example of
how this is accomplished.

Listing 3

displacement
parented_3d_noise(float Km = 0.1,
 freq = 5,
 amp = 1;
 string space = "object")
{
float hump = 0;

Page 126

point n = normalize(N),
pp = transform(space, P);

hump = noise(pp * freq) * amp;

P = P - n * hump * Km;
N = calculatenormal(P);
}

Figure 9 shows three frames of an animation in which the displacement shader is
using "object" space. In effect the displacements are parented to the polyplane.

Page 127

RSL
Using Cellnoise

Introduction
Pages 255 to 261 of "Advanced RenderMan" by Gritz and Apodaca provide
an introduction to the RSL function cellnoise(). This note attempts to explain
how Gritz and Apodaca are using cellnoise to create solid textures.

Basic Code
The sample code used for this tutorial consists of the function and surface
shader given in listing 1. The function dist2cell() is almost identical to the
code on pages 257 and 258 of the "Advanced RenderMan" book. The function
shown in listing 1 differs in that it provides a parameter that enables a
user-specified coordinate system to control cellnoise(). The dist2cell()
function first transforms the xyz position (p) of the micro-polygon being
shaded into what ever spacename is passed to the function from the shader. A
nested for-loop finds the distance to the centers of cubes that form a 3x3x3
lattice of imaginary "cells" in the neighborhood of point p. The function returns
the distance to the center of the nearest cell. Note that in listing 1 because the
call to cellnoise() is commented the nearest cell is always the central cube
in the lattice ie. the "cell" (or cube) in which point p is located.

The cell_test shader determines if the value returned from the function is
within a user-defined distance called shape_rad. If the value exceeds
shape_rad the micro-polygon being shaded is made fully transparent. Before
cellnoise() is activated the shader is little more than a rather uninteresting
cookie-cutter. This will not be the case after cellnoise() is activated.

Listing 1

float dist2cell(point p; string spacename; float freq)
{
point pp = transform(spacename, p) * freq;
point thiscell = point(floor(xcomp(pp)) + 0.5,
 floor(ycomp(pp)) + 0.5,
 floor(zcomp(pp)) + 0.5);
float dist2nearest = 1000;
uniform float i,j,k;
for(i = -1; i <= 1; i+= 1)
 for(j = -1; j <= 1; j+= 1)
 for(k = -1; k <= 1; k+= 1)
 {
 point testcell = thiscell + vector(i,j,k);
 point pos = testcell;

Page 128

 // + vector cellnoise(testcell) - 0.5;
 float dist = distance(pos,pp);
 if(dist < dist2nearest)
 dist2nearest = dist;
 }
return dist2nearest;
}
//---
surface
cell_test(float Kd = 1,
 cellfreq = 5,
 shape_rad = 0.5,
 shape_freq = 8,
 shape_amp = 1,
 mindist = 10,
 maxdist = 15;
 string spacename = "shader")
{
color surfcolor = 1;
normal n = normalize(N);
normal nf = faceforward(n, I);

float d = dist2cell(P, spacename, cellfreq);
float rad = shape_rad;
if(d <= rad)
 Oi = Os;
else
 Oi = 0;
surfcolor = 1 - smoothstep(mindist, maxdist, length(I));

color diffusecolor = Kd * diffuse(nf);
Ci = Oi * Cs * surfcolor * diffusecolor;
}

The function, with the code shown in comments ie.

 point pos = testcell;// + vector cellnoise(testcell) - 0.5;

was used by the surface shader to assign transparency/opacity to a
criss-crossed stack of poly-planes shown in figure 1. As can be seen the
opaque spheres are aligned to the centers of the matrix of imaginary cells.

Page 129

Figure 1 Figure 2

Figure 2 was rendered with cellnoise() activated ie.

 point pos = testcell + vector cellnoise(testcell) - 0.5;

As can be clearly seen in figure 2, cellnoise() has had the effect of jittering
the centers of the lattice of cells. As a consequence the pattern of spheres
has become irregular.

Page 130

RSL
Introduction to Class-Based Shaders

Introduction
This tutorial provides an introduction to the writing of class-based shaders. The
notes were prepared using prman 13.5.2. The primary source of information on this
topic is the Pixar document,
 DOCS/prman_technical_rendering/AppNotes/ShaderObjects.html

That document refers to enhancements to the shading language that enable
shaders to be written in an object oriented style of programming (OOP). Because
the term "object" can be generically applied to (almost) anything stored in the
memory of a computer the combination of new and existing RSL terminology can
be confusing. This tutorial refers to "traditional shaders" and "class-based shaders"
in an attempt to distinguish the older shader programming techniques from the new
OOP style in which a shader is "wrapped" or "packaged" within a class.

For the purpose of demonstrating the basics of the object oriented features of the
RenderMan Shading Language, two shaders from the tutorial "RSL: Shader to
Shader Messaging" are used as "starting points" for the development of a couple of
variations of a class-based shader.

Basic Code - Traditional Shaders
The combined effect of the shaders in listings 1 and 2 are shown below. The
displacement shader, hills.sl, assigns bumpiness to an object. The surface
shader, snow.sl, based on its use of the Rsl displacement() function to querry
the value of the hump variable of the displacement shader, decides which color to
assign to the surface. Both shaders have deliberatrly been kept simple so that the
reader can more easily see the correspondence between the original code of
listings 1 and 2 and its later use in the class-based shaders.

Figure 1

Page 131

Listings 1 and 2 (hills.sl, snow.sl)

displacement hills(float Km = -0.1,
 Kf = 8;
 output varying float hump = 0)
{
normal n = normalize(N);

hump = noise(transform("shader",P) * Kf);
P = P - n * (hump - 0.5) * Km;
N = calculatenormal(P);
}

surface snow(float Kd = 0.8,
 snow_ht = 0.5)
{
normal n = normalize(N),
 nf = faceforward(n, I);
float hump = 0;
color surfcolor = Cs;

// Querry the displacement shader
if(displacement("hump", hump) == 1) {
 if(hump >= snow_ht)
 surfcolor = 1;
 }
color diffusecolor = Kd * diffuse(nf);
Oi = Os;
Ci = Oi * surfcolor * diffusecolor;
}

The rib file used to render figure 1 is shown in listing 3. It should be noted the
surface shader, despite changes to the value of the "Kf" parameter of the
displacement shader, correcly colorizes (ignore the aliasing) the bumps
irrespective of their location on the surface of the sphere. Message passing
ensures the coordinated behavior of the shaders.

Listing 3 (snowOnHills.rib)

Display "untitled" "it" "rgba"
Format 250 250 1
Projection "perspective" "fov" 40
ShadingRate 1

Translate 0 0 3
Rotate -30 1 0 0
Rotate 0 0 1 0
Scale 1 1 -1
WorldBegin
 LightSource "pointlight" 1 "intensity" 45 "from" [3 3 3]

Page 132

 TransformBegin
 Surface "snow" "snow_ht" 0.5
 Displacement "hills" "Kf" 8

 Attribute "bound" "displacement" [0.1]
 Color 0.341 0.266 0.184
 Sphere 1 -1 1 360
 TransformEnd
WorldEnd

Basic Code - Class Based Shader
Listing 4 gives the first "cut" of a class-based shader that mimics the behavior of
hills.sl and snow.sl. The first thing to notice is that the use of the reserved
word class gives no indication of what "kind" of shader is being implemented. In
contrast, the source code of a traditional shader immediately "declares" what it is
implementing by the use of a reserved word such as surface, displacement,
light etc.

Only upon further inspection of snowOnHills.sl do we discover that it
encapsulates two items of functionality. It can perform displacement shading and
surface shading, both of which are implemented by special functions known, in the
terminology of Object Oriented Programming (OOP), as methods. A class-based
shader, such as snowOnHills, is not required to implement both of these methods
but in doing so it ensures that data such as n and hump can be shared its methods.

Listing 4 (snowOnHills.sl)

class snowOnHills(float Kd = 1,
 Km = -0.1,
 Kf = 8,
 snow_ht = 0.5)
{
varying float hump = 0;
varying normal n = 0;

public void displacement(output point P; output normal N) {
 n = normalize(N);
 hump = noise(transform("shader", P) * Kf);
 P = P - n * (hump - 0.5) * Km;
 N = calculatenormal(P);
 }

public void surface(output color Ci, Oi) {
 n = normalize(N);
 normal nf = faceforward(n, I);
 color surfcolor = Cs;

 if(hump >= snow_ht)
 surfcolor = 1;
 color diffusecolor = Kd * diffuse(nf);

Page 133

 Oi = Os;
 Ci = Oi * surfcolor * diffusecolor;
 }
}

Assigning the Shader Object in a Rib File
If the implementation of snowOnHills contained only a displacement method it
would be obvious that a rib file that referenced the shader (object) should do so as
follows,

 Displacement "snowOnHills" "Km" -0.1 "Kf" 8

However, snowOnHills has both displacement and surface shading capabilities, so
it is less obvious how it should be referenced in a rib file. As shown in figures 2 and
3 using it as a Displacment shader or a Surface shader yields very different
results.

Figure 2
Using the shader object as a
Displacement shader ie.

Displacement "snowOnHills"
Surface "plastic"

Figure 3
Using the shader object as a
Surface shader ie.

Surface "snowOnHills"

Specularity is absent from figure 3 because the surface method does not perform a
specular lighting calculation. The shader can be adapted to take advantage of
(re-lighting) rendering efficiencies that might possibly be introduced in future
versions of Pixar's software. This is the subject of the next section.

Factored Lighting
Listing 5 replaces the surface() method with the following,

 public void prelighting (output color Ci, Oi)
 public void lighting (output color Ci, Oi)
 public void postlighting(output color Ci, Oi)

Page 134

Apart from the declaration of diffusecolor and surfcolor as member (ie.
shared) variables, the functionality of the new shader object is the same as the
previous version. Using the new shader object in a rib file is the same as figure 3 ie.

 TransformBegin
 Surface "snowOnHills"
 Attribute "bound" "displacement" [0.1]
 Color 0.341 0.266 0.184
 Sphere 1 -1 1 360
 TransformEnd

Listing 5 (factored lighting)

class snowOnHills(float Kd = 1,
 Km = -0.1,
 Kf = 8,
 snow_ht = 0.5)
{
varying float hump = 0;
varying normal n = 0;
varying color diffusecolor = 0;
varying color surfcolor = 1;

public void displacement(output point P; output normal N) {
 n = normalize(N);
 hump = noise(transform("shader", P) * Kf);
 P = P - n * (hump - 0.5) * Km;
 N = calculatenormal(P);
 }
public void prelighting(output color Ci, Oi) {
 if(hump >= snow_ht)
 surfcolor = 1;
 }
public void lighting(output color Ci, Oi) {
 diffusecolor = diffuse(n) * Kd;
 }
public void postlighting(output color Ci, Oi) {
 Oi = Os;
 Ci = Oi * Cs * surfcolor * diffusecolor;
 }
}

Using Co Shaders
For the purposes of illustrating the use of co shaders, the version of snowOnHills
in this section does not use factored lighting. Although a "co shader" is part of the
shading pipeline it is not a shader as such - at least not in the sense that it can be
assigned and used, by itself, to shade an object. Instead, it implements one or more
methods that can be called upon to perform calculations on behalf of a class-based
shader (ie. shader object). For example, listing 6 provides the code for a co shader
that "returns" white only for micro-polygons of a bump that are facing upward.

Page 135

Listing 6 (Co shader)

class hillColor()
{
public void getColor(normal dir;
 float KsnowLine, altitude;
 output color c;)
 {
 vector objectDir = transform("world", dir);
 // Facing upward, therefore, show snow!
 if(ycomp(objectDir) >= 0 && altitude >= KsnowLine)
 c = 1;
 else
 c = Cs;
 }
}

A co shader friendly version of snowOnHills is shown next.

Listing 7

class snowOnHills(float Kd = 1,
 Km = -0.1,
 Kf = 8,
 snow_ht = 0.5;
 string co_shader = "")
{
varying float hump = 0;
varying normal n = 0;

public void displacement(output point P; output normal N) {
 n = normalize(N);
 hump = noise(transform("shader", P) * Kf);
 P = P - n * (hump - 0.5) * Km;
 N = calculatenormal(P);
 }

public void surface(output color Ci, Oi) {
 n = normalize(N);
 normal nf = faceforward(n, I);
 color surfcolor = Cs;
 if(co_shader != "")
 {
 shader shd = getshader(co_shader);
 shd->getColor(n, snow_ht, hump, surfcolor);
 }
 else
 {
 if(hump >= snow_ht)
 surfcolor = 1;
 }
 color diffusecolor = Kd * diffuse(nf);

Page 136

 Oi = Os;
 Ci = Oi * surfcolor * diffusecolor;
 }
}

Using a co-shader in a rib file is relatively straightforward. For example, RmanTools
can write the appropriate rib statement - figure 4.

Figure 4

As shown below, Cutter inserts a comment that names of the public method(s)
implemented by the co-shader. It also provides a generic name ("local_name") by
which the co-shader can be referenced by the shader object that will make use of it
ie. snowOnHills. It is best to change the generic name to something that is
descriptive of the purpose of the co-shader.

 TransformBegin
 # Public method: getColor()
 Shader "hillColor" "locale_name"
 "foo" 1.0
 Surface "snowOnHills" "co_shader" ["locale_name"]
 Attribute "bound" "displacement" [0.1]
 Color 0.341 0.266 0.184
 Sphere 1 -1 1 360
 TransformEnd

The effect of the co-shader can be seen in figure 5.

Page 137

Figure 5

Why Use Co-Shaders?
In the context of the relatively simple code for snowOnHills, it makes very little
sense to use a co-shader for the calculation of the surface color. However, that is
true only because the code has been deliberately kept simple for the sake of the
tutorial. A reason for using a co-shader is its "plug-and-playness". For example,
without making any changes to the snowOnHills shader, a different effect can be
achieved merely by substituting another co-shader. The main point to note is that
snowOnHills expects to call a co-shader that implements a public method with this
signature,

 public void getColor(normal; float, float; output color)

Therefore, any co-shader that has a public method of the "form" expected by
snowOnHills can be deployed. Listing 8 gives the code for a different co-shader
that can be used by snowOnHills.

Listing 8 (drift.sl)

class drift(vector snowDrift = vector(0,1,0))
{
vector snowDir;

public void construct() {
 snowDir = transform("object", normalize(snowDrift));
 }

public void getColor(normal dir;
 float KsnowLine, altitude;
 output color c;)
 {
 vector objectDir = transform("object", normalize(dir));

 // Calculate the dot product to decide if we're
 // facing the direction of the snow.
 if(objectDir.snowDir >= 0)
 c = 1;
 else
 c = Cs;
 }
}

Page 138

Figure 6
Setting a snow direction.

The rib that produced figure 6 was edited as follows,

 TransformBegin
 # Public method: getColor()
 Shader "drift" "locale_name" "snowDrift" [1 1 0]
 Surface "snowOnHills" "co_shader" ["locale_name"]
 Attribute "bound" "displacement" [0.1]
 Color 0.341 0.266 0.184
 Sphere 1 -1 1 360
 TransformEnd

Page 139

Cutter
Shader Writing

Introduction
Editing rib and rsl files with Cutter offers many advantages compared to using a
general purpose text editor. Cutter applies syntax coloration to both types of
scripts. Rendering a rib file and compiling a shading language document is
conveniently accomplished using the keyboard shortcuts Alt + e, Control + e or
Apple + e. If Pixar's documentation is installed on the users computer Alt + double
clicking on a keyword in a rib or rsl file will trigger Cutter to display the relevant html
document in its internal browser. Being able to quickly refer to Pixar's
documentation in an excellent aid to learning about their unique rendering and
shading technology. As an added bonus for those who wish to use their custom
shaders with either RenderMan Artist Tools (RAT) or RenderMan Studio (RMS),
Cutter automatically writes a slim appearance file for each shader it compiles. In
addition, for users of RAT or RMS, Cutter can also convert shading language
source code into a Pixar Slim template, thus enabling artists to add custom
shading nodes to Slim. For detailed information about Cutter and Slim refer to the
tutorial "Cutter: Automatic Conversion of Shaders and RSL Functions to Slim Files"
For users who wish to use their custom shaders with Houdini, Cutter can
automatically invoke "rmands" (a utility application that is part of the Side Effects
installation) in order to create and update an artists OTL file.

This tutorial outlines how Cutter should be set up. The tutorial assumes the reader
has installed a RenderMan complient renderer.

Using Cutter for Shader Writing
First, the reader should check their RenderMan (Rman) preference settings in
Cutter. Open the preferences window ie.
 Edit->Show Preferences->Rman->User

Setting the User Paths
Set these paths to the directories that will store your shader source code,
shaders, textures and rendered frames of animation. The paths can be specified
as full or relative. Relative paths "begin" at the directory in which the cutter.jar file is
located.

Page 140

Cutter 1
Setting the directories for the shader
source files, shaders, textures and

rendered frames.

Cutter 2
Setting the location of the shaders and the

bin directory of the renderer.

Setting up for Houdini
If your shaders will be used with Side Effects Houdini, "Output to Houdini OTL" should
be activated and a path should be set to a shared OTL file.
 Edit->Show Preferences->Rman->User->Output to Houdini OTL
If the path is left empty Cutter will create a OTL file for each shader it compiles. Initially,
Cutter will indicate the file does not exist ie.

Cutter 3
Activating OTL output.

Ignore the warning. The path will change from red to black once the OTL is created.

Setting the Preferred Renderer and Pixar's Slim Output
By default Cutter expects to compile shaders and render rib files using Pixar's rendering
environment ie. RenderMan Pro-Server. As shown below if you are using a different
system it must be set using the drop-down menu.

Page 141

Cutters Shader Development Work Flow
The process of developing and testing a shader consists of repeatedly cycling
through the following five steps. Once a shader yields visual results that look
promising, then and only then, should it be tested in an application such as Maya
or Houdini. Confining the developmental shader writing process entirely to Cutter
ensures a very fast work flow.

1 Open a copy of a "constant_test" shader ie.
 Rman Tool->Docs->Shader Docs->Constant

2 Save the file as "contant_test.sl" in your "shader_src" directory
3 Compile the shader - keyboard shortcuts Alt+e, Control+e or Apple+e.

Cutter will ensure the compiler will save the shader to the users "shaders"
directory.

4 Open a rib file to test the shader ie.
 Rman Tools->Docs->Single Frame Rib
Cutter will generated a rib file that references the compiled shader and lists its
default parameter values. It will also add a number of Option "path"
statements that will ensure your shaders, textures and rib archive directories
will be searched by the renderer.

5 Save the rib file and render it - keyboard shortcut Alt+e, Control+e or Apple+e.

Cutters Keyframing Facilities
It is often very useful to animate the parameters of a shader in order to see how
surface opacity, color and displacements interact. Importing a shader into Maya or
Houdini is a time consuming process although, of course, such applications enable
an artist to fully assess a shader. Cutter offers a simple keyframing facility that
enables animations to be directly and quickly created. For information about this
topic refer to the tutorial "Cutter: KeyFraming".

Page 142

Cutter
Converting Shaders and RSL Functions to Slim Templates

Introduction
This tutorial provides a detailed description of Cutter's ability to automatically
generate Slim™ template and appearance files. Although the tutorial includes a brief
description of these files it is assumed the reader has some familiarity with Slim
palettes and appearance editors.

To avoid confusion, when this tutorial refers to the Slim application it will capitalize
the first letter of the word Slim. Slim's text files, on the other hand, will be referred to
in all lower case ie. slim.

Slim scripts are text files that come in two flavors - appearance slims and template
slims. Both are built on top of Tcl and both are identified by their ".slim" file
extension. An appearance slim file contains GUI information that defines the
interface presented by a Slim editor to an artist for the purpose of adjusting the
parameters of a shader. By itself an appearance slim file is useless - it must be
accompanied by a pre-compiled shader. A template file, on the other hand, is not
associated with a pre-compiled shader so in addition to having GUI information it
also contains Tcl code that is used by Slim to write and compile a shader
"on-the-fly".

A shader (plus an optional appearance slim file) imported into Slim (RenderMan
Artist Tools RAT) or HyperShade (RenderMan Studio RMS) appears as a
"non-connectable/static" shading node. A template slim file when read by Slim
appears as a "connectable/dynamic" shading node. When using RMS a template
cannot be referenced directly by HyperShade. However, once Slim has used the
template file to generate and compile a shader it can be added to the scene ie.
HyperShade loads the newly compiled shader.

A full description of the slim file format can be found at within the Rat documentation
at,
 programmingRAT/customizing_slim/slimfile.html
 programmingRAT/customizing_slim/templatesAdvanced.html

Refer to the tutorial "Slim Quick Reference" for examples of slim "parameter
blocks". Cutter can assist an artist by automatically generating both appearance
and template slim files.

Appearance Slim Files

Page 143

When the renderer in the RmanTools->Options->Environment popup menu (figure
1) is set to Pixar, Cutter automatically generates an appearance slim document for
the RSL source code file being compiled.

Figure 1

For example, if the source code for Pixar's classic cloth.sl shader is compiled,
Cutter will generate an appearance file called cloth.slim. Cutter saves its
appearance slim files in the same directory as the compiled shader file.

Figure 2 - Setting the shaders directory

A users preferred shader directory, figure 2, can be set using the
 Edit->Show Preferences->Rman->User->shaders

By including user-interface hints within the comments that "accompany" the

Page 144

declaration of a shaders parameters (instance variables) an artist can easily take
advantage of Cutters ability to "tune" the way a shader is presented by
HyperShade (RMS) or Slim (RAT).

Template Slim Files
Cutter can generate a template slim document from most types of shaders or RSL
functions - but not functions that return void or an array. For example, figure 3
shows the code for an RSL function, taken from the Advanced RenderMan book,
being exported as a slim template. After saving the slim document it must be loaded
or read by Slim.

Figure 3

Cutter & Custom Templates
This section focuses on the loading and use of templates produced by Cutter. First,
the procedure for RAT will be dealt with followed by RMS.

RenderMan Artist Tools
Make sure you have the "expert menu's" option activated in
 Slim->Preferences tab.

Page 145

A custom slim file can be read by Slim via its console - figure 4.

Figure 4

To create a node from the custom template use the "Preloaded" menu item (figure
5).

Figure 5

RenderMan Studio
Make sure the "expert menu's" option is activated in
 Slim->Preferences->Interface tab.

A custom slim file can be read by Slim via its console - figure 4. To create a node
from the custom template you will need to dig around the "floats" sub-menus (figure
6).

Page 146

Figure 6

Cutter and Maya's Command Port
Cutter is able to communicate with Maya via a port. In Maya enter the following
command,
 commandPort -n ":2222"

There is no particular significance to the port number "2222" but its the one that
Cutter uses by default. It can be changed in Preferences - figure 7.

Page 147

Figure 7

Assuming you have a template slim file open on Cutter's desktop execute the file
using the keyboard shortcut, alt+e, control+e or apple+e. Cutter will write a
temporary mel script into its own directory and then send a mel source command
to Maya on the users chosen port. Depending on whether you are using RAT or
RMS, Cutter will write the appropriate mel script that will cause Slim to,

open a palette window
add a node created from your template slim file, and
open an editor for the node.

Cutter & UI Hints
When Cutter writes an appearance or template slim file it parses the data for each
shader/function parameter. Cutter reads the datatype, name, default value and any
commented text that accompanies a parameter. Converting a parameter datatype,
name and value to the appropriate Slim file format is straight forward. However,
Cutter uses certain items of information "embedded" within the comments as a
guide to how it should define the GUI that Slim will present to the artist. Cutter
determines what information to put into a slim file in a two step process.

Step 1
First, it guesses what each parameter should look like when they are displayed by
the Slim editor. The guesses are based on the data type and name of each shader
parameter or function argument.

Step 2
Next, Cutter looks for a user-interface hint (ui-hint) within the comments associated
with a parameter. Cutter considers any text it finds within "[" and "]" brackets as
possible sources of information that it can use to refine the "look" of the GUI.

Table 1 gives a full listing of the rules that it applies when making a guess about the
"look" of a GUI. Table 2 lists what Cutter considers to be valid ui-hints.

Table 1 Guessing

float param
If param begins with "K", for example,
 float Kz = 0;
or the param name is either,
 roughness, blend, mix, smooth or step
The slider will have the range 0 to 1.

If the name of a parameter matches the
names shown on the left, or if its initial
character is "K", Cutter will write a slim
document that will assign a slider. This
occurs only if the parameter is of type float

string param
A guess is made about the type of popup
menu that should appear next o the text
field based on a partial match of param with
the following,

The list of partial names on the left are
associated with the following Slim
subtype's. Subtypes configure the popup
menu that appears next to a text field.
Sub-types are,

Page 148

tex, tra, env, filter, shad, refl, world, shader,
camera, current or coord

"texture" "environment" "filter" "shadow"
"reflection" "spacename" "spacename"

Table 2 UI-hints

float param /* [range hint] */
Examples
 /* [-2 5] */
 /* [-2 5 1] */
 /* [0 or 1] */
 /* [low med high 1 2 3] */

"slider" range from -2 to 5
"slider" 1 unit increments
"switch" on or off
"selector" popup names/values

string param /* [string hint] */
Examples
 /* [texture] */
 /* [environment] */
 /* [filter] */
 /* [shadow] */
 /* [reflection] */
 /* [spacename] */

A Slim popup will match th ui-hint.
In the case of filter a "selector" will be
assigned with following values,
 box
 gaussian
 disk
 radial-bspline

ANY param /* [collection hint] */
Examples
 /*[collection foo] */
 /*[collection foo 0 or 1] */
 /*[collection foo pixar,FNoise]*/

If a hint begins with "collection" the
parameter is bundled into a Slim collection .
The collection is displayed in a "closed"
state.

ANY param /* [inline hint] */
Examples
 /* [pixar,FNoise] */

Hints that include a comma will "hard-wire" a
connection node to the parameter. The
connected node will appear (inline) within a
collection.

ANY param /* [expression hint] */
Examples
 /* [exp {lerp(0.0,1,$pct}] */
 /* [expr {lerp(0.0,1,$pct}] */
 /* [expression {lerp(0.0,1,$pct}] */

A hint beginning with "exp", "expr" or
"expression" followed by text bounded by
"{" and "}" defines a Tcl expression.

Hybrid
Defining shading nodes with template slim files provides an artist with the flexibility
to connect its inputs to a shading network. On the other hand, limiting an artist to
using pre-compiled shaders prevents them from using the node as part of a
shading network. Between these two "extremes" there is a hybrid approach in
which the artist is given a custom node, defined by a slim template, but some of its
parameters are hard-wired ie. pre-connected, to specific nodes. Using the "inline
hint" shown in table 2 ensures a parameter is pre-connected and that the
connection cannot be broken.

Copies of Shaders & their Appearance Slim Files

Page 149

A slim appearance file generated by Cutter specifies the full path to the shader that
"accompanies" the slim file, for example,

 slim 1 appearance slim {
 instance surface "foo" "//C/shaders/foo" {

This is fine when the shader (plus slim appearance file) is imported into Slim and
the Maya scene is rendered locally but an absolute path causes errors when a
Maya project directory is moved to a render farm for remote rendering.

The path to the shader can be relative if the shader (and its slim document) are
stored in Maya's project "rmanshader" or "rib" directory. In addition to specifying a
fixed "shaders" directory, users can nominate an additional (temporary) directory in
which copies of their ".slo" and ".slim" files can be saved by Cutter - figure 6.

Figure 8

For example, if the user selects the "rmanshader" directory the path to the shader
in a slim appearance document would be of the form,

 slim 1 appearance slim {
 instance surface "foo" "rmanshader/foo" {

Limitations
There's probably lots of them, but here are the known ones!

#include's
If the include statement does not specify the full path to a header, Cutter applies a
number of rules when determining what path to provide in the output template
document

System headers ie. #include <foo.h>, appear in the template file prefixed with the
full path to the lib/shaders directory of the Pixar installation. Cutter does not check

Page 150

the existence of the file.

Include statements such as #include "foo.h" cause Cutter to search for the
header file in the following locations.
1. the same directory as the source document
2. the RSL source directory specified in the Preferences (figure 2)
3. the shaders directory specified in the Preferences (figure 2)
4. the system headers directory

The first location in which the file is found will be used as the specification of the full
path given to the slim output document. If the include file cannot be found it is
specified "as is" in the output slim document - this will almost certainly cause an
error later if the template is loaded into slim.

While it is acceptable to use header files that reference other headers when
compiling a shader, it appears that slim template documents cannot do the same.
Therefore, you will have to edit your include files so that they do not reference
"secondary" headers. There may be a work-around but I do not know what it is!

Shader Instance Variables and their Default Values
Cutter can "read" these assignments,

float foo = 5,
 koo = radians(5);

but not these assignments,

float foo = 1/(2 * PI);
float pp = PI;

Cutter can handle fixed length arrays but not the newer kind of variable length
arrays. For example, this is acceptable,

color nnn[3] = {1, (1,2,3), color(1)};

#define's
These cannot appear in the document from which a slim template will be generated.
They must be moved into an include file. This may change in later versions of
Cutter.

custom functions implemented in an SL document
Custom functions must be moved to an include file.

Signatures
The Languages->Slim preferences panel (figure 9) enables a user to set their
"studio", "author" and "prefix" signatures. These items are used to identify the slim
templates generated by Cutter.

Page 151

Figure 9

Page 152

	0_Pixars Renderman.pdf
	001_Course Summary_1.pdf
	002_Course Schedule_1.pdf
	003_Main Index_2.pdf
	005_Course Preface_2.pdf
	007_Basic Camera_2.pdf
	009_TransfAttr_3.pdf
	012_Camera Transforms_3.pdf
	015_Handedness_5.pdf
	020_Stereo_6.pdf
	026_Depth Map Shadows_8.pdf
	034_Raytraced Shadows_2.pdf
	036_Problem Quadrics_4.pdf
	040_Prebaked RIBs_2.pdf
	042_Procedural PrimitivesI_4.pdf
	046_Procedural PrimitivesII_5.pdf
	051_Procedural PrimitivesIII_10.pdf
	061_Procedural Blobby_5.pdf
	066_Curve Basics_3.pdf
	069_Shading Language Overview_5.pdf
	074_Whats a Surface Shader_3.pdf
	077_Writing Surface Shaders_17.pdf
	094_Writing Displacement Shaders_15.pdf
	109_Secondary Images_6.pdf
	114_Using Noise_5.pdf
	118_Using CellNoise_3.pdf
	121_Appearances_Templates_2.pdf
	123_Slim GUI Quick Reference_5.pdf
	128_Cutter for Shader Writing_3.pdf
	131_Cutter for Slim Files_10.pdf

