
Part 1: What is OpenCL™?

Justin Hensley, Ph.D.
Principal Member of Technical Staff,
Office of the CTO - Advanced Technology Initiatives
Advanced Micro Devices, Inc.

1

http://www.amd.com/us-en/
http://www.amd.com/us-en/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F1900520.1900529&domain=pdf&date_stamp=2010-12-15

Welcome to OpenCL™

With OpenCL™ you can…
 Leverage CPUs, GPUs, other processors such as Cell/B.E.

processor and DSPs to accelerate parallel computation
 Get dramatic speedups for computationally intensive applications
 Write accelerated portable code across different devices and

architectures

2

Overview

Video 1: What is OpenCL™?
 Design Goals
 The OpenCL™ Execution Model

Video 2: What is OpenCL™? (continued)
 The OpenCL™ Platform and Memory Models

Video 3: Resource Setup
 Setup and Resource Allocation

Video 4: Kernel Execution
 Execution and Synchronization

Video 5: Programming with OpenCL™ C
 Language Features
 Built-in Functions

3

OpenCL™ Execution Model

Kernel
 Basic unit of executable code - similar to a C function
 Data-parallel or task-parallel

Program
 Collection of kernels and other functions
 Analogous to a dynamic library

Applications queue kernel execution instances
 Queued in-order
 Executed in-order or out-of-order

4

Expressing Data-Parallelism in OpenCL™

Define N-dimensional computation domain (N = 1, 2 or 3)
 Each independent element of execution in N-D domain is

called a work-item
 The N-D domain defines the total number of work-items that

execute in parallel
E.g., process a 1024 x 1024 image: Global problem dimensions:
1024 x 1024 = 1 kernel execution per pixel: 1,048,576 total
executions

5

void
scalar_mul(int n,
 const float *a,
 const float *b,
 float *result)
{
 int i;
 for (i=0; i<n; i++)
 result[i] = a[i] * b[i];
}

Scalar

kernel void
dp_mul(global const float *a,
 global const float *b,
 global float *result)
{
 int id = get_global_id(0);
 result[id] = a[id] * b[id];
}
// execute dp_mul over “n” work-items

Data-Parallel

Expressing Data-Parallelism in OpenCL™

Kernels executed across a global domain of work-items
 Global dimensions define the range of

computation
 One work-item per computation, executed in

parallel
Work-items are grouped in local workgroups
 Local dimensions define the size of the workgroups
 Executed together on one device
 Share local memory and synchronization

Caveats
 Global work-items must be independent: No global

synchronization
 Synchronization can be done within a workgroup

6

Global and Local Dimensions

Global Dimensions: 1024 x 1024 (whole problem space)

Local Dimensions: 128 x 128 (executed together)

1024

1
0
2
4

Synchronization between
work-items possible only
within workgroups:
barriers and memory
fences

Can not synchronize
outside of a workgroup

7

Example Problem Dimensions

1D: 1 million elements in an array:
 global_dim[3] = {1000000,1,1};

2D: 1920 x 1200 HD video frame, 2.3M pixels:
 global_dim[3] = {1920, 1200, 1};

3D: 256 x 256 x 256 volume, 16.7M voxels:
 global_dim[3] = {256, 256, 256};

Choose the dimensions that are “best” for your algorithm
 Maps well
 Performs well

8

Synchronization Within Work-Items

No global synchronization, only within workgroups
The work-items in each workgroup can:

 Use barriers to synchronize execution
 Use memory fences to synchronize memory accesses

You must adapt your algorithm to only require
synchronization

 Within workgroups (e.g., reduction)
 Between kernels (e.g., multi-pass)

9

Expressing Task-Parallelism in OpenCL™

Executes as a single work-item

A kernel written in OpenCL™ C

A native C / C++ function

10

Part 2: What is OpenCL™? (continued)

Justin Hensley, Ph.D.
Principal Member of Technical Staff,
Office of the CTO - Advanced Technology Initiatives
Advanced Micro Devices, Inc.

11

http://www.amd.com/us-en/
http://www.amd.com/us-en/

Overview

Video 1: What is OpenCL™?
 Design Goals
 The OpenCL™ Execution Model

Video 2: What is OpenCL™? (continued)
 The OpenCL™ Platform and Memory Models

Video 3: Resource Setup
 Setup and Resource Allocation

Video 4: Kernel Execution
 Execution and Synchronization

Video 5: Programming with OpenCL™ C
 Language Features
 Built-in Functions

12

Global and Local Dimensions

Global Dimensions: 1024 x 1024 (whole problem space)

Local Dimensions: 128 x 128 (executed together)

1024

1
0
2
4

Synchronization between
work-items possible only
within workgroups:
barriers and memory
fences

Can not synchronize
outside of a workgroup

13

OpenCL™ Platform Model

A host connected to one or more OpenCL™ devices
OpenCL™ devices:
 A collection of one or more compute units (cores)
 A compute unit

– Composed of one or more processing elements
– Processing elements execute code as SIMD or SPMD

14

Host

OpenCL™ Compute Device

Processing Element

Compute Unit

Compute Device

Workgroup Workgroup

Host

OpenCL™ Memory Model

Work-
Item

Work-
Item

Work-
Item

Work-
Item

Private
Memory

Private
Memory

Private
Memory

Private
Memory •Private Memory: Per

work-item

Local MemoryLocal Memory
•Local Memory: Shared

within a workgroup

Global/Constant Memory •Local Global/Constant
Memory: Not synchronized

Host Memory •Host Memory: On the
CPU

Memory management is explicit
You must move data from host to global to local and back

15

OpenCL™ Objects

Setup
 Devices—GPU, CPU, Cell/B.E.
 Contexts—Collection of devices
 Queues—Submit work to the device

Memory
 Buffers—Blocks of memory
 Images—2D or 3D formatted images

Execution
 Programs—Collections of kernels
 Kernels—Argument/execution instances

Synchronization/profiling
 Events

16

Queue

Context

Queue

OpenCL™ Framework

17

Context

Compile code Create data &
arguments

Send to
execution

Images

Memory Objects

Buffers

Command Queues

In
Order
Queue

Out
Order
Queue

dp_mul
CPU program

binary

dp_mul
GPU program

binary

Programs

__kernel void
dp_mul(__global const float *a,
! __global const float *b,
! __global float *c)
{
 int id = get_global_id(0);
 c[id] = a[id] * b[id];
}

dp_mul

arg [0] value

arg [1] value

arg [2] value

Kernels

Part 3: Resource Setup

Justin Hensley, Ph.D.
Principal Member of Technical Staff,
Office of the CTO - Advanced Technology Initiatives
Advanced Micro Devices, Inc.

18

http://www.amd.com/us-en/
http://www.amd.com/us-en/

Overview

Video 1: What is OpenCL™?
 Design Goals
 The OpenCL™ Execution Model

Video 2: What is OpenCL™? (continued)
 The OpenCL™ Platform and Memory Models

Video 3: Resource Setup
 Setup and Resource Allocation

Video 4: Kernel Execution
 Execution and Synchronization

Video 5: Programming with OpenCL™ C
 Language Features
 Built-in Functions

19

OpenCL™ Framework

20

Context

Compile code Create data &
arguments

Send to
execution

Images

Memory Objects

Buffers

Command Queues

In
Order
Queue

Out
Order
Queue

dp_mul
CPU program

binary

dp_mul
GPU program

binary

Programs

__kernel void
dp_mul(__global const float *a,
! __global const float *b,
! __global float *c)
{
 int id = get_global_id(0);
 c[id] = a[id] * b[id];
}

dp_mul

arg [0] value

arg [1] value

arg [2] value

Kernels

1. Get the device(s)
2. Create a context
3. Create command queue(s)

cl_uint num_devices_returned;
cl_device_id devices[2];
err = clGetDeviceIDs(NULL, CL_DEVICE_TYPE_GPU, 1,
 &devices[0], num_devices_returned);
err = clGetDeviceIDs(NULL, CL_DEVICE_TYPE_CPU, 1,
 &devices[1], &num_devices_returned);

cl_context context;
context = clCreateContext(0, 2, devices, NULL, NULL, &err);

cl_command_queue queue_gpu, queue_cpu;
queue_gpu = clCreateCommandQueue(context, devices[0], 0, &err);
queue_cpu = clCreateCommandQueue(context, devices[1], 0, &err);

Setup

21

Queue

Context

Queue

Setup: Notes

Devices
 Multiple cores on CPU or GPU together are a single

device
 OpenCL™ executes kernels across all cores in a data-

parallel manner
Contexts

 Enable sharing of memory between devices
 To share between devices, both devices must be in the

same context
Queues

 All work submitted through queues
 Each device must have a queue

22

Choosing Devices

A system may have several devices—which is best?
The “best” device is algorithm- and hardware-dependent

Query device info with: clGetDeviceInfo(device, param_name, *value)
 Number of compute units CL_DEVICE_MAX_COMPUTE_UNITS

 Clock frequency CL_DEVICE_MAX_CLOCK_FREQUENCY

 Memory size CL_DEVICE_GLOBAL_MEM_SIZE

 Extensions (double precision, atomics, etc.)

Pick the best device for your algorithm
 Sometimes CPU is better, other times GPU is better

23

Memory Resources

Buffers
 Simple chunks of memory
 Kernels can access however they like (array, pointers,

structs)
 Kernels can read and write buffers

Images
 Opaque 2D or 3D formatted data structures
 Kernels access only via read_image() and write_image()
 Each image can be read or written in a kernel, but not

both

24

Image Formats and Samplers

Formats
 Channel orders: CL_A, CL_RG, CL_RGB, CL_RGBA, etc.
 Channel data type: CL_UNORM_INT8, CL_FLOAT, etc.
 clGetSupportedImageFormats() returns supported formats

Samplers (for reading images)
 Filter mode: linear or nearest
 Addressing: clamp, clamp-to-edge, repeat, or none
 Normalized: true or false

Benefit from image access hardware on GPUs

25

cl_image_format format;
format.image_channel_data_type = CL_FLOAT;
format.image_channel_order = CL_RGBA;

cl_mem input_image;
input_image = clCreateImage2D(context, CL_MEM_READ_ONLY, &format,
!! ! ! image_width, image_height, 0, NULL, &err);
cl_mem output_image;
output_image = clCreateImage2D(context, CL_MEM_WRITE_ONLY, &format,
!! ! ! image_width, image_height, 0, NULL, &err);

cl_mem input_buffer;
input_buffer = clCreateBuffer(context, CL_MEM_READ_ONLY,
!! ! ! sizeof(cl_float)*4*image_width*image_height, NULL, &err);
cl_mem output_buffer;
output_buffer = clCreateBuffer(context, CL_MEM_WRITE_ONLY,
!! ! ! sizeof(cl_float)*4*image_width*image_height, NULL, &err);

Allocating Images and Buffers

26

Reading and Writing Memory Object Data

Explicit commands to access memory object data
 Read from a region in memory object to host memory

– clEnqueueReadBuffer(queue, object, blocking, offset, size,
*ptr, ...)

 Write to a region in memory object from host memory
– clEnqueueWriteBuffer(queue, object, blocking, offset, size,

*ptr, ...)

 Map a region in memory object to host address space
– clEnqueueMapBuffer(queue, object, blocking, flags, offset,

size, ...)

 Copy regions of memory objects
– clEnqueueCopyBuffer(queue, srcobj, dstobj, src_offset,

dst_offset, ...)

Operate synchronously (blocking = CL_TRUE) or asynchronously

27

Introduction to OpenCL™: part 4

Justin Hensley, Ph.D.
Principal Member of Technical Staff,
Office of the CTO - Advanced Technology Initiatives
Advanced Micro Devices, Inc.

28

http://www.amd.com/us-en/
http://www.amd.com/us-en/

Overview

Video 1: What is OpenCL™?
 Design Goals
 The OpenCL™ Execution Model

Video 2: What is OpenCL™? (continued)
 The OpenCL™ Platform and Memory Models

Video 3: Resource Setup
 Setup and Resource Allocation

Video 4: Kernel Execution
 Execution and Synchronization

Video 5: Programming with OpenCL™ C
 Language Features
 Built-in Functions

29

Program and Kernel Objects

Program objects encapsulate
 A program source or binary
 List of devices and latest successfully built executable

for each device
 A list of kernel objects

Kernel objects encapsulate
 A specific kernel function in a program

–Declared with the kernel qualifier
 Argument values
 Kernel objects can only be created after the program

executable has been built

30

Program

Compile
for GPU

GPU
code

Compile
for CPU

x86
code

kernel void
horizontal_reflect(read_only image2d_t src,
 write_only image2d_t dst)
{
 int x = get_global_id(0); // x-coord
 int y = get_global_id(1); // y-coord
 int width = get_image_width(src);
 float4 src_val = read_imagef(src, sampler,
 (int2)(width-1-x, y));
 write_imagef(dst, (int2)(x, y), src_val);

}

Kernel Code

Programs build executable code for multiple devices

Execute the same code on different devices

31

Compiling Kernels

1. Create a program
 Input: String (source code) or precompiled binary
 Analogous to a dynamic library: A collection of kernels

2. Compile the program
 Specify the devices for which kernels should be compiled
 Pass in compiler flags
 Check for compilation/build errors

3. Create the kernels
 Returns a kernel object used to hold arguments for a

given execution

32

File: kernels.cl
// ---------------------------------
// Images Kernel
// ---------------------------------
kernel average_images(read_only image2d_t input, write_only image2d_t output)
{
! sampler_t sampler = CLK_ADDRESS_CLAMP | CLK_FILTER_NEAREST | CLK_NORMALIZED_COORDS_FALSE;
! int x = get_global_id(0);
! int y = get_global_id(1);
! float4 sum = (float4)0.0f;
!
! int2 pixel;
! for (pixel.x=x-SIZE; pixel.x<=x+SIZE; pixel.x++)
! ! for (pixel.y=y-SIZE; pixel.y<=y+SIZE; pixel.y++)
! ! ! sum += read_imagef(input, sampler, pixel);
!
! write_imagef(output, (int2)(x, y), sum/TOTAL);
};

Creating a Program

cl_program program;
program = clCreateProgramWithSource(context, 1, &source, NULL, &err);

33

Compiling and Creating a Kernel

err = clBuildProgram(program, 0, NULL, NULL, NULL, NULL);

if (err) {
 char log[10240] = "";
 err = clGetProgramBuildInfo(program, device, CL_PROGRAM_BUILD_LOG,
	 	 	 sizeof(log), log, NULL);
 printf("Program build log:\n%s\n", log);
}

kernel = clCreateKernel(program, "average_images", &err);

34

size_t global[3] = {image_width, image_height, 0};
err = clEnqueueNDRangeKernel(queue, kernel, 2, NULL, global, NULL, 0, NULL, NULL);

•Note: Your kernel is executed asynchronously
■ Nothing may happen—you have only enqueued

your kernel
■ Use a blocking read clEnqueueRead*(... CL_TRUE ...)
■ Use events to track the execution status

Executing Kernels

1. Set the kernel arguments
2. Enqueue the kernel

err = clSetKernelArg(kernel, 0, sizeof(input), &input);
err = clSetKernelArg(kernel, 1, sizeof(output), &output);

35

Each individual queue can execute in order or out of order
 For in-order queue, all commands execute in order
 Behaves as expected (as long as you’re enqueuing from

one thread)
You must explicitly synchronize between queues

 Multiple devices each have their own queue
 Use events to synchronize

Events
 Commands return events and obey waitlists
 clEnqueue*(..., num_events_in_waitlist, *event_waitlist,
*event_out)

Synchronization Between Commands

36

Synchronization: One Device/Queue

GPU

En
qu

eu
e

K
er

ne
l 1

Kernel 1

En
qu

eu
e

K
er

ne
l 2

Kernel 2

Time

Kernel 2 waits in the queue
until Kernel 1 is finished.

•Example: Kernel 2 uses the results of Kernel 1

Command Queue

37

Synchronization: Two Devices/Queues

Kernel
1

Kernel
2

GPU CPU

Explicit dependency: Kernel 1 must finish before Kernel 2
starts

38

Output Input

GPU

CPU

En
qu

eu
e

K
er

ne
l 1

Kernel 1
En

qu
eu

e
K

er
ne

l 2

Time

Synchronization: Two Devices/Queues

GPU

CPU

En
qu

eu
e

K
er

ne
l 1

Kernel 1

En
qu

eu
e

K
er

ne
l 2

Kernel 2

Time

Kernel 2

Kernel 2 waits for an
event from Kernel 1, and
does not start until the

results are ready

Kernel 2 starts before the
results from Kernel 1 are

ready

39

Using Events on the Host

clWaitForEvents(num_events, *event_list)
 Blocks until events are complete

clEnqueueMarker(queue, *event)
 Returns an event for a marker that moves through the

queue
clEnqueueWaitForEvents(queue, num_events, *event_list)

 Inserts a “WaitForEvents” into the queue
clGetEventInfo()

 Command type and status
CL_QUEUED, CL_SUBMITTED, CL_RUNNING, CL_COMPLETE, or error code

clGetEventProfilingInfo()
 Command queue, submit, start, and end times

40

Part 5: OpenCL™ C

Justin Hensley, Ph.D.
Principal Member of Technical Staff,
Office of the CTO - Advanced Technology Initiatives
Advanced Micro Devices, Inc.

41

http://www.amd.com/us-en/
http://www.amd.com/us-en/

Overview

Video 1: What is OpenCL™?
 Design Goals
 The OpenCL™ Execution Model

Video 2: What is OpenCL™? (continued)
 The OpenCL™ Platform and Memory Models

Video 3: Resource Setup
 Setup and Resource Allocation

Video 4: Kernel Execution
 Execution and Synchronization

Video 5: Programming with OpenCL™ C
 Language Features
 Built-in Functions

42

OpenCL™ C Language

Derived from ISO C99
 No standard C99 headers, function pointers, recursion,

variable length arrays, and bit fields
Additions to the language for parallelism

 Work-items and workgroups
 Vector types
 Synchronization

Address space qualifiers
Optimized image access
Built-in functions

43

A data-parallel function executed for each work-item

get_global_id(0)

Kernel

kernel void square(__global float* input,
 __global float* output)
{
 int i = get_global_id(0);
 output[i] = input[i] * input[i];
}

36 1 1 0 81 4 16 1 1 81 49 1 4 4 1 81 64 16 1 81 4 0 0 49 64

input 6 1 1 0 9 2 4 1 1 9 7 6 1 2 2 1 9 8 4 1 9 2 0 0 7 8

 output 36

44

i==11

Work-Items and Workgroup Functions

6 1 1 0 9 2 4 1 1 9 7 6 1 2 2 1 9 8 4 1 9 2 0 0 7 8input

45

get_global_size 26

get_work_dim

1

get_local_size 13

get_local_id 8
get_global_id 21

get_group_id 0

workgroups
get_num_groups 2

Data Types

Scalar data types
 char , uchar, short, ushort, int, uint, long, ulong
 bool, intptr_t, ptrdiff_t, size_t, uintptr_t, void,
 half (storage)

Image types
 image2d_t, image3d_t, sampler_t

Vector data types

46

Data Types

Portable
Vector length of 2, 4, 8, and 16

 char2, ushort4, int8, float16, double2, …

Endian safe

Aligned at vector length

Vector operations and built-in functions

47

Vector Operations

•Vector literal
int4 vi0 = (int4) -7;

0 1 2 3int4 vi1 = (int4)(0, 1, 2, 3);

-7 -7 -7 -7

48

Vector Operations

•Vector literal
int4 vi0 = (int4) -7;

0 1 2 3int4 vi1 = (int4)(0, 1, 2, 3);

•Vector components
vi0.lo = vi1.hi;

-7 -7 -7 -7

49

2 3 -7 -7

int8 v8 = (int8)(vi0.s0123, vi1.odd); 2 3 -7 -7 0 1 1 3

Vector Operations

•Vector literal
int4 vi0 = (int4) -7;

0 1 2 3int4 vi1 = (int4)(0, 1, 2, 3);

•Vector components
2 3 -7 -7vi0.lo = vi1.hi;

-7 -7 -7 -7

50

2 3 -7 -7 0 1 1 3

Vector Operations

•Vector literal
int4 vi0 = (int4) -7;

0 1 2 3int4 vi1 = (int4)(0, 1, 2, 3);

•Vector components
2 3 -7 -7vi0.lo = vi1.hi;

-7 -7 -7 -7

51

int8 v8 = (int8)(vi0.s0123, vi1.odd);

•Vector ops

2 4 5 42 4 -5 -4

vi0 += vi1;

vi0 = abs(vi0);

2 3 -7 -7
+

0 1 2 3

Address Spaces

kernel void distance(global float8* stars, local float8* local_stars)
kernel void sum(private int* p) // Illegal because is uses private

•Kernel pointer arguments must use global, local, or constant

kernel void average(read_only global image_t in, write_only
image2d_t out)

• image2d_t and image3d_t are always in global address
space

•Default address space for arguments and local variables is
private

kernel void smooth(global float* io) {
 float temp;
 ...

52

Address Spaces

53

•Program (global) variables must be in constant address
space

•Casting between different address spaces is undefined

constant float bigG = 6.67428E-11;
global float time; // Illegal non constant
kernel void force(global float4 mass) { time = 1.7643E18f; }

kernel void calcEMF(global float4* particles) {
 global float* particle_ptr = (global float*) particles;
 float* private_ptr = (float*) particles; // Undefined behavior -
 float particle = * private_ptr; // different address
}

Conversions

Scalar and pointer conversions follow C99 rules

•No implicit conversions for vector types
float4 f4 = int4_vec; // Illegal implicit conversion

•No casts for vector types (different semantics for vectors)
float4 f4 = (float4) int4_vec; // Illegal cast

•Casts have other problems
float x;
int i = (int)(x + 0.5f); // Round float to nearest integer

Wrong for:
 0.5f - 1 ulp (rounds up not down)
 negative numbers (wrong answer)

•There is hardware to do it on nearly every machine

54

Conversions

Explict conversions:
convert_destType<_sat><_roundingMode>

– Scalar and vector types
– No ambiguity

uchar4 c4 = convert_uchar4_sat_rte(f4);

f4
c4

Saturate to 0

Round down to nearest even

Round up to nearest value

Saturated to 255

2552552540

-5.0f 254.5f 254.6 1.2E9f

55

Reinterpret Data: as_typen

Reinterpret the bits to another type
Types must be the same size

// f[i] = f[i] < g[i] ? f[i] : 0.0f
float4 f, g;
int4 is_less = f < g;
f = as_float4(as_int4(f) & is_less);

f

g

as_int

f

OpenCL™ provides a select built-in

&

is_less ffffffff ffffffff 00000000 00000000

c0a00000 42fe0000 00000000 00000000

-5.0f 254.5f 0.0f 0.0f

c0a00000 42fe0000 437e8000 4e8f0d18

-5.0f 254.5f 254.6f 1.2E9f

254.6f 254.6f 254.6f 254.6f

56

Built-in Math Functions

IEEE 754 compatible rounding behavior for single precision
floating-point
IEEE 754 compliant behavior for double precision floating-point
Defines maximum error of math functions as ULP values
Handle ambiguous C99 library edge cases
Commonly used single precision math functions come in three
flavors

 eg. log(x)
– Full precision <= 3ulps
– Half precision/faster. half_log—minimum 11 bits of accuracy, <= 8192 ulps
– Native precision/fastest. native_log: accuracy is implementation defined

 Choose between accuracy and performance

57

Synchronization
 barrier
 mem_fence, read_mem_fence, write_mem_fence

Work-group functions
 Encountered by all work-items in the work-group
 With the same argument values

kernel read(global int* g, local int* shared) {
 if (get_global_id(0) < 5)
 barrier(CLK_GLOBAL_MEM_FENCE);
 else
 k = array[0];
}

Built-in Work-group Functions

work-item 0

work-item 6
Illegal since not all
work-items
encounter barrier

58

Built-in Functions

Integer functions
 abs, abs_diff, add_sat, hadd, rhadd, clz, mad_hi, mad_sat,

max, min, mul_hi, rotate, sub_sat, upsample
Image functions
 read_image[f | i | ui]
 write_image[f | i | ui]
 get_image_[width | height | depth]

Common, Geometric and Relational Functions
Vector Data Load and Store Functions
 eg. vload_half, vstore_half, vload_halfn, vstore_halfn, ...

59

Extensions

Atomic functions to global and local memory
 add, sub, xchg, inc, dec, cmp_xchg, min, max, and, or,

xor
 32-bit/64-bit integers

Select rounding mode for a group of instructions at compile
time

 For instructions that operate on floating-point or produce
floating-point values

 #pragma OpenCL_select_rounding_mode
rounding_mode

 All 4 rounding modes supported
Extension: Check clGetDeviceInfo with CL_DEVICE_EXTENSIONS

60

61

Disclaimer & Attribution

DISCLAIMER
The information presented in this document is for informational purposes only and may contain
technical inaccuracies, omissions and typographical errors.

The information contained herein is subject to change and may be rendered inaccurate for many
reasons, including but not limited to product and roadmap changes, component and motherboard
version changes, new model and/or product releases, product differences between differing
manufacturers, software changes, BIOS flashes, firmware upgrades, or the like. AMD assumes
no obligation to update or otherwise correct or revise this information. However, AMD reserves
the right to revise this information and to make changes from time to time to the content hereof
without obligation of AMD to notify any person of such revisions or changes.

AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE CONTENTS HEREOF
AND ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS OR OMISSIONS THAT
MAY APPEAR IN THIS INFORMATION.

AMD SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS
FOR ANY PARTICULAR PURPOSE. IN NO EVENT WILL AMD BE LIABLE TO ANY PERSON FOR ANY
DIRECT, INDIRECT, SPECIAL OR OTHER CONSEQUENTIAL DAMAGES ARISING FROM THE USE OF
ANY INFORMATION CONTAINED HEREIN, EVEN IF AMD IS EXPRESSLY ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

ATTRIBUTION
© 2009 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo, ATI, the
ATI Logo, FirePro, FireStream, Radeon, and combinations thereof are trademarks of Advanced
Micro Devices, Inc. Other names are for informational purposes only and may be trademarks of
their respective owners.

OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission by Khronos.

