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Course Goals

• Provide a background for papers, panels, and other courses

• Help appreciate the images you will see

• Get more from the vendor exhibits

• Provide pointers for further study
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Specific Topics

• The Graphics Process

• Graphics Hardware

• Modeling

• Rendering

• GPU Shaders

• Finding More Informationg
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The Graphics Process

Li htiLighting
Information

3D
Geometric

M d l
Rendering Image

Storage andModels

Texture

Storage and
Display

3D
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The Graphics Process: Geometric Modeling

3D 
Scanningg

Interactive
3D

Geometric
Models

Geometric
Modeling

Rendering
Models

Model
LibrariesLibraries

Displacement
Mapping
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The Graphics Process: 3D Animation

Motion
Design

3D

g

Motion 3D
Animation
Definition

Motion
Computation

Rendering

Motion
Capture

Dynamic
Deformations
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The Graphics Process: Texturing

Scanned
Images

Texture
InformationComputed

Images Rendering

PaintedPainted
Images
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The Graphics Process: Rendering

Lighting
3D

Geometric
Models

Lighting
Information

Models

Image

Rendering

g
Storage

and
Display

Transformation,
Clipping,

Perspective

Image
Generation

3D

DisplayPerspective

Animation
Definition Texture

I f i
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The Graphics Process:
Image Storage and Display

Hardware
Framebuffer

Rendering
Film

Recorder
Disk
File

Recorder

Video
R d
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The Graphics Process; Summary

Li htiLighting
Information

3D
Geometric

M d l
Rendering Image

Storage andModels
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Storage and
Display
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MC Vertices

Generic Computer Graphics System

CPU

Input
Devices

Vertex
Processor

RasterizerB
u
s

Network
Fragment

SC Vertices

Pixel Parameters

Variables

Variables

Z Buffer

Fragment
Processor

MC = Model Coordinates
WC = World Coordinates
EC = Eye Coordinates
CC = Clip Coordinates TC

Video

Z-Buffer

Back

RGBAZ
Pixels

CC = Clip Coordinates
NDC = Normalized Device Coordinates
SC = Screen Coordinates
TC = Texture Coordinates RGBA

Texels

Video
Driver

Double-bufferedTexture Memory

Front
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The Human

• Acuity: 1 arc-minute for those with 20/20 vision

• Required refresh rate: 40-80 refreshes/second

• Required update rate: 15+ frames/second
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The Computer Graphics Monitor(s)

Video
Driver
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Displaying Color on a
Computer Graphics LCD Monitor

•• Grid of electrodesGrid of electrodesG d o e ec odesG d o e ec odes

•• Color filtersColor filters
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Additive Color (RGB)
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Display Resolution

•• PixelPixel resolutions (1024x768 resolutions (1024x768 -- 1920x1152 1920x1152 are common)are common)

•• Screen size (13", 16", 19", 21" are common)Screen size (13", 16", 19", 21" are common)

•• Human acuity: 1 arcHuman acuity: 1 arc--minute is achieved by viewing minute is achieved by viewing a a 19" 19" monitormonitor
with with 1280x1024 resolution from a 1280x1024 resolution from a distance distance of ~40 inchesof ~40 inches
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The Video Driver

Video
Back

Video
DriverFront
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The Video Driver

•• N N refreshesrefreshes/second/second (N is usually between 40 and 80)(N is usually between 40 and 80)

•• Framebuffer contains the R,G,B that define the color Framebuffer contains the R,G,B that define the color at each at each pixelpixel, ,, , pp

•• CursorCursor
-- Appearance is stored near the video driverAppearance is stored near the video driver

in a “miniin a “mini--framebuffer”framebuffer”
-- x,yx,y is given by the CPUis given by the CPU

•• Video inputVideo input
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The Framebuffer

Fragment

Z-Buffer

g
Processor

(custom code can go here)

Video
Back

Driver

Double-buffered
Framebuffers

Front

Framebuffers
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The Framebuffer:
Integer Color Storage

8 28 =   256
10 210 1024

# Bits/color # Shades per colorBB

10 210 = 1024
GG

RR

Total colors:
24 224 = 16.7 M

# Bits/pixel

24 2 16.7 M
30 230 = 1 B
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The Framebuffer:
Floating Point Color Storage

• 16- or 32-bit floating point for each color component

g g

B

Why so much?

G Many modern algorithms do arithmetic on the 
framebuffer color components.  They need the 
extra precision during the arithmetic.

 h  l    l  ll 

R
However, the display system cannot display all 
of those possible colors.
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The Framebuffer

• Alpha values• Alpha values

– Transparency per pixel
α = 0. is invisible

 1 iα = 1. is opaque

– Represented in 8-32 bits
(integer or floating point)

– Alpha blending equation:

Color = α 1C + (1 − α ) 2C
Oregon State University

Computer Graphics
Brown  Cunningham
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The Framebuffer

•• ZZ--bufferbuffer
–– Used for hidden surface removalUsed for hidden surface removal

Z

B

–– Holds pixel depthHolds pixel depth

–– Typically 16, 24, or 32Typically 16, 24, or 32
bits deepbits deepbits deepbits deep

–– Integer or floating pointInteger or floating point

G

Total Z Values:# Bits / Z

R
16          216 = 65 K
24          224 = 17 M
32          232 = 4 B
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The Framebuffer

Double-buffering: Don't let the viewer see any of the scene until
the entire scene is drawn

Update
Vid

Back

Refresh

Video
DriverFront

R f h

Video
DriverFront

Update Refresh
Back
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The Fragment Processor

Rasterizer

Fragment
Processor

(custom code can go here)

Texture Memory
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The Fragment Processor

T k i ll i f ti th t d ib thi i l• Takes in all information that describes this pixel

• Produces the RGBA for that pixel’s location in the framebuffer
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The Rasterizer

Vertex
Processor

(custom code can go here)

Rasterizer

Fragmentg
Processor

(custom code can go here)
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Rasterization

• Turn screen space vertex coordinates into pixels that 
make up lines and polygons

• A great place for custom electronicsA great place for custom electronics
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Rasterizers Interpolate:

• X and Y

• Red-green-blue values

• Alpha values

• Z values

• IntensitiesIntensities

• Surface normals

• Texture coordinates

• Custom values given by the shaders
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Texture Mapping

F t

B
u
s Fragment

Processor
(custom code can go here)

Texture Memory
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Texture Mapping

• “Stretch” an image onto a piece of geometry• Stretch  an image onto a piece of geometry

• Image can be generated by a program or scanned in

• Useful for realistic scene generation
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Something New:
Write-Your-Own Fragment-Processor Code

Rasterizer

Fragment

Bump 
Mapping

Fragment
Processor

(custom code can go here)

Texture Memory
Line Integral 
Convolution

Referred to as: 
Pixel Shaders or Fragment Shaders

Texture Memory
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Vertex Processor

• Coordinates enter in world (application) coordinate space

• Coordinates leave in screen (pixel) coordinate space(p ) p

• Another great place for custom electronics
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The Vertex Processor

CPU

Vertex
Processor

(custom code can go here)

Rasterizer
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Vertex Processor: Transformations

• Used to correctly place objects in the scene

• Translation

• Rotation

• Scaling

Oregon State University
Computer Graphics

Brown  Cunningham
Associates

September 23, 2010



Vertex Processor:
Windowing and Clipping

• Declare which portion of the 3D universe you are interested in viewing

• This is called the view volume

• Clip away everything that is outside the viewing volume
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Vertex Processor: Projection

• Turn 3D coordinates into 2D

P ll l j i P ll l li  – Parallel projection Parallel lines 
remain parallel

– Perspective projection Some parallel lines 
appear to converge
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Vertex Processor: Projection

Parallel

Perspective
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Something New:
Write-Your-Own Vertex Code

Vertex

Wireframe 
Teapot Dome 
P j i

CPU

Vertex
Processor

(custom code can go here)

Projection

Rasterizer

Referred to as:
Vertex Shaders

Mars 
Panoram 
Dome 
P j ti
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The CPU and Bus

Input
Vertex 

Processor

CPU

Input
Devices (custom code can go here)

B
u

Type of 
Board

Speed to 
Board

Speed 
from 

Board

Network s

Board
PCI 132 

Mb/sec
132 

Mb/sec
AGP 8X 2 Gb/ 264AGP 8X 2 Gb/sec 264 

Mb/sec
PCI 

Express
4 Gb/sec 4 Gb/sec
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MC Vertices

All Together Now !

CPU

Input
Devices

Vertex
Processor

SC Vertices Variables

RasterizerB
u
s

Network
Fragment

SC Vertices

Pixel Parameters

Variables

Variables

Z-Buffer

g
Processor

RGBAZ

MC = Model Coordinates
WC = World Coordinates
EC = Eye Coordinates
CC = Clip Coordinates
NDC = Normalized Device Coordinates

TC

Video
Back

PixelsNDC = Normalized Device Coordinates
SC = Screen Coordinates
TC = Texture Coordinates RGBA

Texels

Driver

Double-buffered
Frameb ffers

Texture Memory

Front
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What is a Model?

A is a model of B if A can be used to ask questions about B.

In computer graphics applications, what do we want to ask about B?

Wh t d B l k lik ?• What does B look like?

• How do I want to interact with (shape) B?

• Does B need to be a legal solid?g

• How does B interact with its environment?

• What is B’s surface area and volume?

These questions, and answers, control what type of 
t i  d li   d t  d
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static GLfloat CubeVertices[ ][3] =

Explicitly Listing Geometry and Topology

32
static GLfloat CubeVertices[ ][3] =
{

{ -1., -1., -1. },
{  1., -1., -1. },
{ 1 1 1 }

76

{ -1.,  1., -1. },
{  1.,  1., -1. },
{ -1., -1.,  1. },
{  1., -1.,  1. },
{ 1 1 1 }

0 1

{ -1.,  1.,  1. },
{  1.,  1.,  1. }

};

t ti GLfl t C b C l [ ][3]

4 5

static GLfloat CubeColors[ ][3] =
{

{ 0., 0., 0. },
{ 1., 0., 0. },
{ 0 1 0 }

static GLuint CubeIndices[ ][4] =
{

{ 0, 2, 3, 1 },
{ 4 5 7 6 }{ 0., 1., 0. },

{ 1., 1., 0. },
{ 0., 0., 1. },
{ 1., 0., 1. },
{ 0 1 1 }

{ 4, 5, 7, 6 },
{ 1, 3, 7, 5 },
{ 0, 4, 6, 2 },
{ 2, 6, 7, 3 },
{ 0 1 5 4 }
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{ 0., 1., 1. },
{ 1., 1., 1. },

};

{ 0, 1, 5, 4 }
};



Cube Example
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Curve Sculpting – Bezier Curve Sculpting Example
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Curve Sculpting – Bezier Curve Sculpting Example

P1
P2

P0

1

P3

3 2 2 3( ) (1 ) 3 (1 ) 3 (1 )P t t P t t P t t P t P= + + +0 1 2 3( ) (1 ) 3 (1 ) 3 (1 )P t t P t t P t t P t P= − + − + − +

0. 1.t≤ ≤
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Curve Sculpting – Bezier Curve Sculpting Example
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Surface Sculpting

Wireframe PolygonalWireframe Polygonal
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Surface equations can also be used for Analysis

With Contour Lines Showing CurvatureWith Contour Lines Showing Curvature
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Solid Modeling Using Boolean Operators

Two Overlapping Solids Union
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Intersection Difference



Oregon State University
Computer Graphics

Brown  Cunningham
Associates

September 23, 2010



Rendering

Rendering is the process of creating an image of a geometric 
model Again there are questions you need to ask:model.  Again, there are questions you need to ask:

H li ti d I t thi i t b ?• How realistic do I want this image to be?

• How much compute time do I have to create this image?

• Do I need to take into account lighting?g g

• Does the illumination need to be global or will local do?

• Do I need to take into account shadows?

• Do I need to take into account reflection and refraction?
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Fundamentals of Computer Graphics Lighting

LR

LG

LB

What the light 
can produce

MR
MG
M

can produce

MB
What the material 
can reflect

Red     = LR*MR
Green  =     LG*MG
Blue     =     LB*MB
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The Computer Graphics Lighting Situation

n R

I

L E
Θ Θ Φ

I

P
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Three Types of Computer Graphics Lighting

1. Ambient = a constant Accounts for light bouncing “everywhere”

2. Diffuse = I*cosΘ Accounts for the angle between incoming 
light and the surface normallight and the surface normal

Accounts for the angle between the “perfect 
3. Specular = I*cosSφ

Accounts for the angle between the perfect 
reflector” and the eye; also the exponent, S, 
accounts for surface shininess

Note that cosΘ is just the dot product between L and n

Note that cosφ is just the dot product between R and E
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Lighting Examples
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Two Types of Rendering

1. Starts at the object

2. Starts at the eye
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Starts at the Object

This is the typical kind of rendering you get on a graphics card.  
Start with the geometry and project it onto the pixels.
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Rasterization

•• Turn screen space vertex coordinates into pixels that Turn screen space vertex coordinates into pixels that make upmake up
lines lines and polygonsand polygons

•• A great place for custom electronicsA great place for custom electronics
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Another From-the-Object Method -- Radiosity

Based on the idea that all surfaces gather 
light intensity from all other surfaceslight intensity from all other surfaces

Th f d t l di it ti iThe fundamental radiosity equation is an 
energy balance that says:

“The light energy leaving surface i equals the 
t f li ht t d b f iamount of light energy generated by surface i 

plus surface i’s reflectivity times the amount of 
light energy arriving from all other surfaces”

i i i i i j j j i
j

B A E A B A Fρ →= + ∑
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The Radiosity Equation

i i i i i j j j i
j

B A E A B A Fρ →= + ∑
is the light energy intensity shining from surface element i

is the area of surface element i

iB

is the area of surface element i

is the internally-generated light energy intensity for surface element i
iA

iE
is surface element i’s reflectivity

is referred to as the Form Factor, or Shape Factor, and describes 
what percent of the energy leaving surface element j that arrives at

i

iρ
what percent of the energy leaving surface element j that arrives at 
surface element ij iF →
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The Radiosity Shape Factor

Θ Θ
2

cos cos
( , )

( , )
j

i j
j i j i

Ai A

F visibility di dj dA dA
Dist di djπ→

Θ Θ
= ∫ ∫ i
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The Radiosity Matrix Equation

i i i i i j j j i
j

B A E A B A Fρ →= + ∑Expand

⎡ ⎤ ⎧ ⎫ ⎧ ⎫

For each surface element, and re-arrange to 
solve for the surface intensities, the B’s:

1 1 1 1 1 2 1 1 1 1

2 2 1 2 2 2 2 2 2 2

1
1

N

N

F F F B E
F F F B E

ρ ρ ρ
ρ ρ ρ

→ → →

→ → →

− − ••• −⎡ ⎤ ⎧ ⎫ ⎧ ⎫
⎢ ⎥ ⎪ ⎪ ⎪ ⎪− − ••• − ⎪ ⎪ ⎪ ⎪⎢ ⎥ =⎨ ⎬ ⎨ ⎬⎢ ⎥ ⎪ ⎪ ⎪ ⎪

1 2 1N N N N N N N N NF F F B Eρ ρ ρ→ → →

⎨ ⎬ ⎨ ⎬⎢ ⎥••• ••• ••• ••• ••• •••⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎪ ⎪ ⎪ ⎪− − ••• −⎣ ⎦ ⎩ ⎭ ⎩ ⎭

This is a lot of equations!
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Radiosity Examples

AR Toolkit
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Autodesk



Radiosity Examples

Cornell University
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Starts at the Eye

The most common approach in this category is ray-tracing:

Splat!Splat!
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The pixel is painted the color of 
the nearest object that is hit.



Starts at the Eye

It’s also easy to see if this point lies in a shadow:
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Fire another ray towards each light source.  If the ray 
hits anything, then the point does not receive that light.



Starts at the Eye

It’s also easy to handle reflection

normal
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Fire another ray that represents the bounce from the 
reflection.  Paint the pixel the color that this ray sees.



Starts at the Eye

It’s also easy to handle refraction

normal

Oregon State University
Computer Graphics

Brown  Cunningham
Associates

September 23, 2010

Fire another ray that represents the bend from the 
refraction.  Paint the pixel the color that this ray sees.



Ray Tracing Examples
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Ray Tracing Examples

Quake 4 Ray-Tracing Project
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Ray Tracing Examples

IBM’s Cell Interactive Ray-tracer
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GPU Shader Programming

• Allows programmers to load their own code into parts of the hardware 
graphics pipelinegraphics pipeline

• Gives a unique combination of control and speed

• This is a hot, new area in computer graphicsg

• These notes will focus on what can be done this way, not on how to do it 
(that would take lots more time)

• If you want to know more there’s another course on just this topic!• If you want to know more, there s another course on just this topic!
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The Generic Computer Graphics System

CPU

Input
Devices

Vertex
Processor

Uniform
variablesCPU

RasterizerB
u
s

Network
Shader
Memory

s
Fragment
Processor

Uniform
variables

Z-BufferRGBAZ
Pixels

TC

Video
DriverFront

Back
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Double-buffered
Framebuffers

Texture Memory



A GLSL Vertex Shader Replaces These Operations:
• Vertex transformations

• Normal transformations

• Normal normalization

• Handling of per vertex lighting• Handling of per-vertex lighting

• Handling of texture coordinates

A GLSL Fragment Shader Replaces These Operations:

• Color computation

• Texturing

• Color arithmetic

• Handling of per-pixel lighting

• Fog

• Blending

Oregon State University
Computer Graphics

Brown  Cunningham
Associates

September 23, 2010

Blending

• Discarding fragments



A GLSL Tessellation Shader:

Breaks geometry into smaller pieces based on adjacent points  • Breaks geometry into smaller pieces based on adjacent points, 
size, curvature, etc.

A GLSL Geometry Shader:

• Breaks geometry into smaller pieces based on more limited 
information

• Changes the geometry’s topology type
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Bump Mapping with Shaders
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Bump Mapping with Shaders
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Visualization by Nick Gebbie



Cube Mapping with Shaders

Cube Map of NVIDIA’s Lobby
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Cube Mapping with Shaders
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Cube Mapping with Shaders
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Rainbow Effects with Shaders

~ 41 °

51.5°0.75541°1.519≈ 500 nmGreen

50.0°0.74342°1.510≈ 650 nmRed

ΘΘcosΘΘηλColor

53.0°0.76640°1.528≈ 400 nmBlue
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Rainbow Strategy

1. Draw one big quadrilateral across the scene

2. Anywhere that .7400 ≤ cos(Θ) ≤ .7700, paint the correct color

3. If not, discard that fragment
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