
Mike Bailey
Oregon State University

Steve Cunningham
Brown/Cunningham Associates

mjb@cs.oregonstate.edu rsc@cs.csustan.edu

Oregon State University
Computer Graphics

Brown Cunningham
Associates

September 23, 2010

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1900520.1900526&domain=pdf&date_stamp=2010-12-15

Mike Bailey

• Professor of Computer Science, Oregon State University

• PhD from Purdue UniversityPhD from Purdue University

• Has worked at Sandia Labs, Purdue University, Megatek,
San Diego Supercomputer Center (UC San Diego), and OSU

• Has taught over 3,900 students in his classes

• mjb@cs.oregonstate.eduj @ g

Oregon State University
Computer Graphics

Brown Cunningham
Associates

September 23, 2010

Steve Cunningham

• Retired Professor of Computer Science, California State
University Stanislausy

• PhD from the University of Oregon

• Has served as chair of both the SIGGRAPH Education Board• Has served as chair of both the SIGGRAPH Education Board
and the Eurographics Education Board

• Has written 7 books on computer graphics topics

• rsc@cs.csustan.edu

Oregon State University
Computer Graphics

Brown Cunningham
Associates

September 23, 2010

Course Goals

• Provide a background for papers, panels, and other courses

• Help appreciate the images you will see

• Get more from the vendor exhibits

• Provide pointers for further study

Oregon State University
Computer Graphics

Brown Cunningham
Associates

September 23, 2010

Specific Topics

• The Graphics Process

• Graphics Hardware

• Modeling

• Rendering

• GPU Shaders

• Finding More Informationg

Oregon State University
Computer Graphics

Brown Cunningham
Associates

September 23, 2010

Oregon State University
Computer Graphics

Brown Cunningham
Associates

September 23, 2010

The Graphics Process

Li htiLighting
Information

3D
Geometric

M d l
Rendering Image

Storage andModels

Texture

Storage and
Display

3D
Animation
D fi iti

Texture
Information

Definition

Oregon State University
Computer Graphics

Brown Cunningham
Associates

September 23, 2010

Oregon State University
Computer Graphics

Brown Cunningham
Associates

September 23, 2010

The Graphics Process: Geometric Modeling

3D
Scanningg

Interactive
3D

Geometric
Models

Geometric
Modeling

Rendering
Models

Model
LibrariesLibraries

Displacement
Mapping

Oregon State University
Computer Graphics

Brown Cunningham
Associates

September 23, 2010

Mapping

The Graphics Process: 3D Animation

Motion
Design

3D

g

Motion 3D
Animation
Definition

Motion
Computation

Rendering

Motion
Capture

Dynamic
Deformations

Oregon State University
Computer Graphics

Brown Cunningham
Associates

September 23, 2010

The Graphics Process: Texturing

Scanned
Images

Texture
InformationComputed

Images Rendering

PaintedPainted
Images

Oregon State University
Computer Graphics

Brown Cunningham
Associates

September 23, 2010

The Graphics Process: Rendering

Lighting
3D

Geometric
Models

Lighting
Information

Models

Image

Rendering

g
Storage

and
Display

Transformation,
Clipping,

Perspective

Image
Generation

3D

DisplayPerspective

Animation
Definition Texture

I f i
Oregon State University

Computer Graphics
Brown Cunningham

Associates
September 23, 2010

Information

The Graphics Process:
Image Storage and Display

Hardware
Framebuffer

Rendering
Film

Recorder
Disk
File

Recorder

Video
R d

Oregon State University
Computer Graphics

Brown Cunningham
Associates

September 23, 2010

Recorder

The Graphics Process; Summary

Li htiLighting
Information

3D
Geometric

M d l
Rendering Image

Storage andModels

Texture

Storage and
Display

3D
Animation
D fi iti

Texture
Information

Definition

Oregon State University
Computer Graphics

Brown Cunningham
Associates

September 23, 2010

Oregon State University
Computer Graphics

Brown Cunningham
Associates

September 23, 2010

MC Vertices

Generic Computer Graphics System

CPU

Input
Devices

Vertex
Processor

RasterizerB
u
s

Network
Fragment

SC Vertices

Pixel Parameters

Variables

Variables

Z Buffer

Fragment
Processor

MC = Model Coordinates
WC = World Coordinates
EC = Eye Coordinates
CC = Clip Coordinates TC

Video

Z-Buffer

Back

RGBAZ
Pixels

CC = Clip Coordinates
NDC = Normalized Device Coordinates
SC = Screen Coordinates
TC = Texture Coordinates RGBA

Texels

Video
Driver

Double-bufferedTexture Memory

Front

Oregon State University
Computer Graphics

Brown Cunningham
Associates

September 23, 2010

Framebuffers
Texture Memory

The Human

• Acuity: 1 arc-minute for those with 20/20 vision

• Required refresh rate: 40-80 refreshes/second

• Required update rate: 15+ frames/second

Oregon State University
Computer Graphics

Brown Cunningham
Associates

September 23, 2010

The Computer Graphics Monitor(s)

Video
Driver

Oregon State University
Computer Graphics

Brown Cunningham
Associates

September 23, 2010

Displaying Color on a
Computer Graphics LCD Monitor

•• Grid of electrodesGrid of electrodesG d o e ec odesG d o e ec odes

•• Color filtersColor filters

Oregon State University
Computer Graphics

Brown Cunningham
Associates

September 23, 2010

Source: http://electronics.howstuffworks.com

Additive Color (RGB)

Oregon State University
Computer Graphics

Brown Cunningham
Associates

September 23, 2010

Display Resolution

•• PixelPixel resolutions (1024x768 resolutions (1024x768 -- 1920x1152 1920x1152 are common)are common)

•• Screen size (13", 16", 19", 21" are common)Screen size (13", 16", 19", 21" are common)

•• Human acuity: 1 arcHuman acuity: 1 arc--minute is achieved by viewing minute is achieved by viewing a a 19" 19" monitormonitor
with with 1280x1024 resolution from a 1280x1024 resolution from a distance distance of ~40 inchesof ~40 inches

Oregon State University
Computer Graphics

Brown Cunningham
Associates

September 23, 2010

The Video Driver

Video
Back

Video
DriverFront

Oregon State University
Computer Graphics

Brown Cunningham
Associates

September 23, 2010

The Video Driver

•• N N refreshesrefreshes/second/second (N is usually between 40 and 80)(N is usually between 40 and 80)

•• Framebuffer contains the R,G,B that define the color Framebuffer contains the R,G,B that define the color at each at each pixelpixel, ,, , pp

•• CursorCursor
-- Appearance is stored near the video driverAppearance is stored near the video driver

in a “miniin a “mini--framebuffer”framebuffer”
-- x,yx,y is given by the CPUis given by the CPU

•• Video inputVideo input

Oregon State University
Computer Graphics

Brown Cunningham
Associates

September 23, 2010

The Framebuffer

Fragment

Z-Buffer

g
Processor

(custom code can go here)

Video
Back

Driver

Double-buffered
Framebuffers

Front

Framebuffers

Oregon State University
Computer Graphics

Brown Cunningham
Associates

September 23, 2010

The Framebuffer:
Integer Color Storage

8 28 = 256
10 210 1024

Bits/color # Shades per colorBB

10 210 = 1024
GG

RR

Total colors:
24 224 = 16.7 M

Bits/pixel

24 2 16.7 M
30 230 = 1 B

Oregon State University
Computer Graphics

Brown Cunningham
Associates

September 23, 2010

The Framebuffer:
Floating Point Color Storage

• 16- or 32-bit floating point for each color component

g g

B

Why so much?

G Many modern algorithms do arithmetic on the
framebuffer color components. They need the
extra precision during the arithmetic.

 h l l ll

R
However, the display system cannot display all
of those possible colors.

Oregon State University
Computer Graphics

Brown Cunningham
Associates

September 23, 2010

The Framebuffer

• Alpha values• Alpha values

– Transparency per pixel
α = 0. is invisible

 1 iα = 1. is opaque

– Represented in 8-32 bits
(integer or floating point)

– Alpha blending equation:

Color = α 1C + (1 − α) 2C
Oregon State University

Computer Graphics
Brown Cunningham

Associates
September 23, 2010

0.0 ≤ α ≤ 1.0

The Framebuffer

•• ZZ--bufferbuffer
–– Used for hidden surface removalUsed for hidden surface removal

Z

B

–– Holds pixel depthHolds pixel depth

–– Typically 16, 24, or 32Typically 16, 24, or 32
bits deepbits deepbits deepbits deep

–– Integer or floating pointInteger or floating point

G

Total Z Values:# Bits / Z

R
16 216 = 65 K
24 224 = 17 M
32 232 = 4 B

Oregon State University
Computer Graphics

Brown Cunningham
Associates

September 23, 2010

The Framebuffer

Double-buffering: Don't let the viewer see any of the scene until
the entire scene is drawn

Update
Vid

Back

Refresh

Video
DriverFront

R f h

Video
DriverFront

Update Refresh
Back

Oregon State University
Computer Graphics

Brown Cunningham
Associates

September 23, 2010

The Fragment Processor

Rasterizer

Fragment
Processor

(custom code can go here)

Texture Memory

Oregon State University
Computer Graphics

Brown Cunningham
Associates

September 23, 2010

The Fragment Processor

T k i ll i f ti th t d ib thi i l• Takes in all information that describes this pixel

• Produces the RGBA for that pixel’s location in the framebuffer

Oregon State University
Computer Graphics

Brown Cunningham
Associates

September 23, 2010

The Rasterizer

Vertex
Processor

(custom code can go here)

Rasterizer

Fragmentg
Processor

(custom code can go here)

Oregon State University
Computer Graphics

Brown Cunningham
Associates

September 23, 2010

Rasterization

• Turn screen space vertex coordinates into pixels that
make up lines and polygons

• A great place for custom electronicsA great place for custom electronics

Oregon State University
Computer Graphics

Brown Cunningham
Associates

September 23, 2010

Rasterizers Interpolate:

• X and Y

• Red-green-blue values

• Alpha values

• Z values

• IntensitiesIntensities

• Surface normals

• Texture coordinates

• Custom values given by the shaders

Oregon State University
Computer Graphics

Brown Cunningham
Associates

September 23, 2010

Texture Mapping

F t

B
u
s Fragment

Processor
(custom code can go here)

Texture Memory

Oregon State University
Computer Graphics

Brown Cunningham
Associates

September 23, 2010

Texture Memory

Texture Mapping

• “Stretch” an image onto a piece of geometry• Stretch an image onto a piece of geometry

• Image can be generated by a program or scanned in

• Useful for realistic scene generation

Oregon State University
Computer Graphics

Brown Cunningham
Associates

September 23, 2010

Something New:
Write-Your-Own Fragment-Processor Code

Rasterizer

Fragment

Bump
Mapping

Fragment
Processor

(custom code can go here)

Texture Memory
Line Integral
Convolution

Referred to as:
Pixel Shaders or Fragment Shaders

Texture Memory

Oregon State University
Computer Graphics

Brown Cunningham
Associates

September 23, 2010

Pixel Shaders or Fragment Shaders

Vertex Processor

• Coordinates enter in world (application) coordinate space

• Coordinates leave in screen (pixel) coordinate space(p) p

• Another great place for custom electronics

Oregon State University
Computer Graphics

Brown Cunningham
Associates

September 23, 2010

The Vertex Processor

CPU

Vertex
Processor

(custom code can go here)

Rasterizer

Oregon State University
Computer Graphics

Brown Cunningham
Associates

September 23, 2010

Vertex Processor: Transformations

• Used to correctly place objects in the scene

• Translation

• Rotation

• Scaling

Oregon State University
Computer Graphics

Brown Cunningham
Associates

September 23, 2010

Vertex Processor:
Windowing and Clipping

• Declare which portion of the 3D universe you are interested in viewing

• This is called the view volume

• Clip away everything that is outside the viewing volume

Oregon State University
Computer Graphics

Brown Cunningham
Associates

September 23, 2010

Vertex Processor: Projection

• Turn 3D coordinates into 2D

P ll l j i P ll l li – Parallel projection Parallel lines
remain parallel

– Perspective projection Some parallel lines
appear to converge

Oregon State University
Computer Graphics

Brown Cunningham
Associates

September 23, 2010

Vertex Processor: Projection

Parallel

Perspective

Oregon State University
Computer Graphics

Brown Cunningham
Associates

September 23, 2010

Perspective

Something New:
Write-Your-Own Vertex Code

Vertex

Wireframe
Teapot Dome
P j i

CPU

Vertex
Processor

(custom code can go here)

Projection

Rasterizer

Referred to as:
Vertex Shaders

Mars
Panoram
Dome
P j ti

Oregon State University
Computer Graphics

Brown Cunningham
Associates

September 23, 2010

Projection

The CPU and Bus

Input
Vertex

Processor

CPU

Input
Devices (custom code can go here)

B
u

Type of
Board

Speed to
Board

Speed
from

Board

Network s

Board
PCI 132

Mb/sec
132

Mb/sec
AGP 8X 2 Gb/ 264AGP 8X 2 Gb/sec 264

Mb/sec
PCI

Express
4 Gb/sec 4 Gb/sec

Oregon State University
Computer Graphics

Brown Cunningham
Associates

September 23, 2010

Express

MC Vertices

All Together Now !

CPU

Input
Devices

Vertex
Processor

SC Vertices Variables

RasterizerB
u
s

Network
Fragment

SC Vertices

Pixel Parameters

Variables

Variables

Z-Buffer

g
Processor

RGBAZ

MC = Model Coordinates
WC = World Coordinates
EC = Eye Coordinates
CC = Clip Coordinates
NDC = Normalized Device Coordinates

TC

Video
Back

PixelsNDC = Normalized Device Coordinates
SC = Screen Coordinates
TC = Texture Coordinates RGBA

Texels

Driver

Double-buffered
Frameb ffers

Texture Memory

Front

Oregon State University
Computer Graphics

Brown Cunningham
Associates

September 23, 2010

Framebuffers

Oregon State University
Computer Graphics

Brown Cunningham
Associates

September 23, 2010

What is a Model?

A is a model of B if A can be used to ask questions about B.

In computer graphics applications, what do we want to ask about B?

Wh t d B l k lik ?• What does B look like?

• How do I want to interact with (shape) B?

• Does B need to be a legal solid?g

• How does B interact with its environment?

• What is B’s surface area and volume?

These questions, and answers, control what type of
t i d li d t d

Oregon State University
Computer Graphics

Brown Cunningham
Associates

September 23, 2010

geometric modeling you need to do

static GLfloat CubeVertices[][3] =

Explicitly Listing Geometry and Topology

32
static GLfloat CubeVertices[][3] =
{

{ -1., -1., -1. },
{ 1., -1., -1. },
{ 1 1 1 }

76

{ -1., 1., -1. },
{ 1., 1., -1. },
{ -1., -1., 1. },
{ 1., -1., 1. },
{ 1 1 1 }

0 1

{ -1., 1., 1. },
{ 1., 1., 1. }

};

t ti GLfl t C b C l [][3]

4 5

static GLfloat CubeColors[][3] =
{

{ 0., 0., 0. },
{ 1., 0., 0. },
{ 0 1 0 }

static GLuint CubeIndices[][4] =
{

{ 0, 2, 3, 1 },
{ 4 5 7 6 }{ 0., 1., 0. },

{ 1., 1., 0. },
{ 0., 0., 1. },
{ 1., 0., 1. },
{ 0 1 1 }

{ 4, 5, 7, 6 },
{ 1, 3, 7, 5 },
{ 0, 4, 6, 2 },
{ 2, 6, 7, 3 },
{ 0 1 5 4 }

Oregon State University
Computer Graphics

Brown Cunningham
Associates

September 23, 2010

{ 0., 1., 1. },
{ 1., 1., 1. },

};

{ 0, 1, 5, 4 }
};

Cube Example

Oregon State University
Computer Graphics

Brown Cunningham
Associates

September 23, 2010

Curve Sculpting – Bezier Curve Sculpting Example

Oregon State University
Computer Graphics

Brown Cunningham
Associates

September 23, 2010

Curve Sculpting – Bezier Curve Sculpting Example

P1
P2

P0

1

P3

3 2 2 3() (1) 3 (1) 3 (1)P t t P t t P t t P t P= + + +0 1 2 3() (1) 3 (1) 3 (1)P t t P t t P t t P t P= − + − + − +

0. 1.t≤ ≤

Oregon State University
Computer Graphics

Brown Cunningham
Associates

September 23, 2010

Curve Sculpting – Bezier Curve Sculpting Example

Oregon State University
Computer Graphics

Brown Cunningham
Associates

September 23, 2010

Surface Sculpting

Wireframe PolygonalWireframe Polygonal

Oregon State University
Computer Graphics

Brown Cunningham
Associates

September 23, 2010

Surface equations can also be used for Analysis

With Contour Lines Showing CurvatureWith Contour Lines Showing Curvature

Oregon State University
Computer Graphics

Brown Cunningham
Associates

September 23, 2010

Solid Modeling Using Boolean Operators

Two Overlapping Solids Union

Oregon State University
Computer Graphics

Brown Cunningham
Associates

September 23, 2010

Intersection Difference

Oregon State University
Computer Graphics

Brown Cunningham
Associates

September 23, 2010

Rendering

Rendering is the process of creating an image of a geometric
model Again there are questions you need to ask:model. Again, there are questions you need to ask:

H li ti d I t thi i t b ?• How realistic do I want this image to be?

• How much compute time do I have to create this image?

• Do I need to take into account lighting?g g

• Does the illumination need to be global or will local do?

• Do I need to take into account shadows?

• Do I need to take into account reflection and refraction?

Oregon State University
Computer Graphics

Brown Cunningham
Associates

September 23, 2010

Fundamentals of Computer Graphics Lighting

LR

LG

LB

What the light
can produce

MR
MG
M

can produce

MB
What the material
can reflect

Red = LR*MR
Green = LG*MG
Blue = LB*MB

Oregon State University
Computer Graphics

Brown Cunningham
Associates

September 23, 2010

The Computer Graphics Lighting Situation

n R

I

L E
Θ Θ Φ

I

P

Oregon State University
Computer Graphics

Brown Cunningham
Associates

September 23, 2010

Three Types of Computer Graphics Lighting

1. Ambient = a constant Accounts for light bouncing “everywhere”

2. Diffuse = I*cosΘ Accounts for the angle between incoming
light and the surface normallight and the surface normal

Accounts for the angle between the “perfect
3. Specular = I*cosSφ

Accounts for the angle between the perfect
reflector” and the eye; also the exponent, S,
accounts for surface shininess

Note that cosΘ is just the dot product between L and n

Note that cosφ is just the dot product between R and E

Oregon State University
Computer Graphics

Brown Cunningham
Associates

September 23, 2010

Lighting Examples

Oregon State University
Computer Graphics

Brown Cunningham
Associates

September 23, 2010

Two Types of Rendering

1. Starts at the object

2. Starts at the eye

Oregon State University
Computer Graphics

Brown Cunningham
Associates

September 23, 2010

Starts at the Object

This is the typical kind of rendering you get on a graphics card.
Start with the geometry and project it onto the pixels.

Oregon State University
Computer Graphics

Brown Cunningham
Associates

September 23, 2010

Rasterization

•• Turn screen space vertex coordinates into pixels that Turn screen space vertex coordinates into pixels that make upmake up
lines lines and polygonsand polygons

•• A great place for custom electronicsA great place for custom electronics

Oregon State University
Computer Graphics

Brown Cunningham
Associates

September 23, 2010

Another From-the-Object Method -- Radiosity

Based on the idea that all surfaces gather
light intensity from all other surfaceslight intensity from all other surfaces

Th f d t l di it ti iThe fundamental radiosity equation is an
energy balance that says:

“The light energy leaving surface i equals the
t f li ht t d b f iamount of light energy generated by surface i

plus surface i’s reflectivity times the amount of
light energy arriving from all other surfaces”

i i i i i j j j i
j

B A E A B A Fρ →= + ∑

Oregon State University
Computer Graphics

Brown Cunningham
Associates

September 23, 2010

The Radiosity Equation

i i i i i j j j i
j

B A E A B A Fρ →= + ∑
is the light energy intensity shining from surface element i

is the area of surface element i

iB

is the area of surface element i

is the internally-generated light energy intensity for surface element i
iA

iE
is surface element i’s reflectivity

is referred to as the Form Factor, or Shape Factor, and describes
what percent of the energy leaving surface element j that arrives at

i

iρ
what percent of the energy leaving surface element j that arrives at
surface element ij iF →

Oregon State University
Computer Graphics

Brown Cunningham
Associates

September 23, 2010

The Radiosity Shape Factor

Θ Θ
2

cos cos
(,)

(,)
j

i j
j i j i

Ai A

F visibility di dj dA dA
Dist di djπ→

Θ Θ
= ∫ ∫ i

Oregon State University
Computer Graphics

Brown Cunningham
Associates

September 23, 2010

The Radiosity Matrix Equation

i i i i i j j j i
j

B A E A B A Fρ →= + ∑Expand

⎡ ⎤ ⎧ ⎫ ⎧ ⎫

For each surface element, and re-arrange to
solve for the surface intensities, the B’s:

1 1 1 1 1 2 1 1 1 1

2 2 1 2 2 2 2 2 2 2

1
1

N

N

F F F B E
F F F B E

ρ ρ ρ
ρ ρ ρ

→ → →

→ → →

− − ••• −⎡ ⎤ ⎧ ⎫ ⎧ ⎫
⎢ ⎥ ⎪ ⎪ ⎪ ⎪− − ••• − ⎪ ⎪ ⎪ ⎪⎢ ⎥ =⎨ ⎬ ⎨ ⎬⎢ ⎥ ⎪ ⎪ ⎪ ⎪

1 2 1N N N N N N N N NF F F B Eρ ρ ρ→ → →

⎨ ⎬ ⎨ ⎬⎢ ⎥••• ••• ••• ••• ••• •••⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎪ ⎪ ⎪ ⎪− − ••• −⎣ ⎦ ⎩ ⎭ ⎩ ⎭

This is a lot of equations!

Oregon State University
Computer Graphics

Brown Cunningham
Associates

September 23, 2010

Radiosity Examples

AR Toolkit

Oregon State University
Computer Graphics

Brown Cunningham
Associates

September 23, 2010
Autodesk

Radiosity Examples

Cornell University

Oregon State University
Computer Graphics

Brown Cunningham
Associates

September 23, 2010
Cornell University

Starts at the Eye

The most common approach in this category is ray-tracing:

Splat!Splat!

Oregon State University
Computer Graphics

Brown Cunningham
Associates

September 23, 2010

The pixel is painted the color of
the nearest object that is hit.

Starts at the Eye

It’s also easy to see if this point lies in a shadow:

Oregon State University
Computer Graphics

Brown Cunningham
Associates

September 23, 2010

Fire another ray towards each light source. If the ray
hits anything, then the point does not receive that light.

Starts at the Eye

It’s also easy to handle reflection

normal

Oregon State University
Computer Graphics

Brown Cunningham
Associates

September 23, 2010

Fire another ray that represents the bounce from the
reflection. Paint the pixel the color that this ray sees.

Starts at the Eye

It’s also easy to handle refraction

normal

Oregon State University
Computer Graphics

Brown Cunningham
Associates

September 23, 2010

Fire another ray that represents the bend from the
refraction. Paint the pixel the color that this ray sees.

Ray Tracing Examples

Oregon State University
Computer Graphics

Brown Cunningham
Associates

September 23, 2010

Ray Tracing Examples

Quake 4 Ray-Tracing Project

Oregon State University
Computer Graphics

Brown Cunningham
Associates

September 23, 2010

Ray Tracing Examples

IBM’s Cell Interactive Ray-tracer

Oregon State University
Computer Graphics

Brown Cunningham
Associates

September 23, 2010

Oregon State University
Computer Graphics

Brown Cunningham
Associates

September 23, 2010

GPU Shader Programming

• Allows programmers to load their own code into parts of the hardware
graphics pipelinegraphics pipeline

• Gives a unique combination of control and speed

• This is a hot, new area in computer graphicsg

• These notes will focus on what can be done this way, not on how to do it
(that would take lots more time)

• If you want to know more there’s another course on just this topic!• If you want to know more, there s another course on just this topic!

Oregon State University
Computer Graphics

Brown Cunningham
Associates

September 23, 2010

The Generic Computer Graphics System

CPU

Input
Devices

Vertex
Processor

Uniform
variablesCPU

RasterizerB
u
s

Network
Shader
Memory

s
Fragment
Processor

Uniform
variables

Z-BufferRGBAZ
Pixels

TC

Video
DriverFront

Back

Oregon State University
Computer Graphics

Brown Cunningham
Associates

September 23, 2010

Double-buffered
Framebuffers

Texture Memory

A GLSL Vertex Shader Replaces These Operations:
• Vertex transformations

• Normal transformations

• Normal normalization

• Handling of per vertex lighting• Handling of per-vertex lighting

• Handling of texture coordinates

A GLSL Fragment Shader Replaces These Operations:

• Color computation

• Texturing

• Color arithmetic

• Handling of per-pixel lighting

• Fog

• Blending

Oregon State University
Computer Graphics

Brown Cunningham
Associates

September 23, 2010

Blending

• Discarding fragments

A GLSL Tessellation Shader:

Breaks geometry into smaller pieces based on adjacent points • Breaks geometry into smaller pieces based on adjacent points,
size, curvature, etc.

A GLSL Geometry Shader:

• Breaks geometry into smaller pieces based on more limited
information

• Changes the geometry’s topology type

Oregon State University
Computer Graphics

Brown Cunningham
Associates

September 23, 2010

Bump Mapping with Shaders

Oregon State University
Computer Graphics

Brown Cunningham
Associates

September 23, 2010

Bump Mapping with Shaders

Oregon State University
Computer Graphics

Brown Cunningham
Associates

September 23, 2010

Visualization by Nick Gebbie

Cube Mapping with Shaders

Cube Map of NVIDIA’s Lobby

Oregon State University
Computer Graphics

Brown Cunningham
Associates

September 23, 2010

Cube Mapping with Shaders

Oregon State University
Computer Graphics

Brown Cunningham
Associates

September 23, 2010

Cube Mapping with Shaders

Oregon State University
Computer Graphics

Brown Cunningham
Associates

September 23, 2010

Rainbow Effects with Shaders

~ 41 °

51.5°0.75541°1.519≈ 500 nmGreen

50.0°0.74342°1.510≈ 650 nmRed

ΘΘcosΘΘηλColor

53.0°0.76640°1.528≈ 400 nmBlue

Oregon State University
Computer Graphics

Brown Cunningham
Associates

September 23, 2010

Rainbow Strategy

1. Draw one big quadrilateral across the scene

2. Anywhere that .7400 ≤ cos(Θ) ≤ .7700, paint the correct color

3. If not, discard that fragment

Oregon State University
Computer Graphics

Brown Cunningham
Associates

September 23, 2010

Oregon State University
Computer Graphics

Brown Cunningham
Associates

September 23, 2010

September 21, 2010 1

Where to Find More Information about
Computer Graphics and Related Topics

Mike Bailey

Oregon State University

1. References

1.1 General Computer Graphics

SIGGRAPH Online Bibliography Database:

http://www.siggraph.org/publications/bibliography

Edward Angel, Interactive Computer Graphics: A Top-down Approach with OpenGL, 5th Edition,

Addison-Wesley, 2008.

Francis Hill and Stephen Kelley, Computer Graphics Using OpenGL, 3rd Edition, Prentice Hall,

2006.

Steve Cunningham, Computer Graphics: Programming in OpenGL for Visual Communication,

Prentice-Hall, 2007

Alan Watt, 3D Computer Graphics, 3rd Edition, Addison-Wesley, 2000.

Peter Shirley, Fundamentals of Computer Graphics, 2nd Edition, AK Peters, 2005.

Andrew Glassner, Graphics Gems, Academic Press, 1990.

James Arvo, Graphics Gems 2, Academic Press, 1991.

David Kirk, Graphics Gems 3, Academic Press, 1992.

Paul Heckbert, Graphics Gems 4, Academic Press, 1994.

Alan Paeth, Graphics Gems 5, Academic Press, 1995.

Jim Blinn, A Trip Down the Graphics Pipeline, Morgan Kaufmann, 1996.

Jim Blinn, Dirty Pixels, Morgan Kaufmann, 1998.

David Rogers, Procedural Elements for Computer Graphics, McGraw-Hill, 1997.

SIGGRAPH Conference Final program.

1.2 Math and Geometry

Michael Mortenseon, Geometric Transformations for 3D Modeling, 2nd Edition, Industrial press,

2007.

Michael Mortenson, Geometric Modeling, John Wiley & Sons, 2006.

September 21, 2010 2

Eric Lengyel, Mathematics for 3D Game Programming and Computer Graphics, Charles River

Media, 2002.

Jean Gallier, Curves and Surfaces in Geometric Modeling, Morgan Kaufmann, 2000.

Walter Taylor, The Geometry of Computer Graphics, Wadsworth & Brooks/Cole, 1992.

Gerald Farin, Curves and Surfaces for Computer Aided Geometric Design, 3rd Edition, Academic

Press, 2001.

Gerald Farin and Dianne Hansford, The Geometry Toolbox for Graphics and Modeling, AK

Peters, 1998.

Joe Warren and Henrik Weimer, Subdivision Methods for Geometric Design: A Constructive

Approach, Morgan Kaufmann, 2001.

Barrett O’Neil, Elementary Differential Geometry, Academic Press, 1997.

Joseph O’Rourke, Computational Geometry in C, Cambridge University Press, 1996.

Christopher Hoffman, Geometric & Solid Modeling, Morgan Kaufmann, 1989.

I.D. Faux and M.J. Pratt, Computational Geometry for Design and Manufacture, Ellis-Horwood,

1979.

Eric Stollnitz, Tony DeRose, and David Salesin, Wavelets for Computer Graphics, Morgan-

Kaufmann, 1996.

Ronen Barzel, Physically-Based Modeling for Computer Graphics, Academic Press, 1992.

David Rogers and J. Alan Adams, Mathematical Elements for Computer Graphics, McGraw-Hill,

1989.

John Snyder, Generative Modeling for Computer Graphics and Computer Aided Design,

Academic Press, 1992.

1.3 Scientific Visualization

Klaus Engel, Markus Hadwiger, Joe Kniss, Christof Rezk-Salama, and Daniel Weiskopf, Real-

Time Volume Graphics, A.K. Peters, 2006.

Christopher Johnson and Charles Hansen, The Visualization Handbook, Elsevier Academic Press,

2005.

David Thompson, Jeff Braun, and Ray Ford, OpenDX: Paths to Visualization, Visualization and

Imagery Solutions, Inc., 2001.

Chandrajit Bajaj, Data Visualization Techniques, John Wiley & Sons, 1999.

Min Chen, Arie Kaufman, and Roni Yagel, Volume Graphics, Springer-Verlag, 2000.

September 21, 2010 3

William Schroeder, Ken Martin, and Bill Lorensen, The Visualization Toolkit, 3rd Edition,
Prentice-Hall, 2004.

Luis Ibanez and William Schroeder, The ITK Software Guide: The Insight Segmentation and

Registration Toolkit (version 1.4), Prentice-Hall, 2003.

Greg Nielson, Hans Hagen, and Heinrich Müller, Scientific Visualization: Overviews,

Methodologies, Techniques, IEEE Computer Society Press, 1997.

Lenny Lipton, The CrystalEyes Handbook, StereoGraphics Corporation, 1991.

Brand Fortner, The Data Handbook: A Guide to Understanding the Organization and

Visualization of Technical Data, Spyglass, 1992.

William Kaufmann and Larry Smarr, Supercomputing and the Transformation of Science,

Scientific American Library, 1993.

Robert Wolff and Larry Yaeger, Visualization of Natural Phenomena, Springer-Verlag, 1993.

Peter Keller and Mary Keller, Visual Cues: Practical Data Visualization, IEEE Press, 1993.

1.4 Shaders

Mike Bailey and Steve Cunningham, Computer Graphics Shaders: Theory and Practice, AK

Peters, 2009.

Randi Rost, Bill Licea-Kane, Dan Ginsburg, John Kessenich, Barthold Lichtenbelt, Hugh Malan,

and Mike Weiblen, OpenGL Shading Language, Addison-Wesley, 2009. (3rd Edition)

Steve Upstill, The RenderMan Companion, Addison-Wesley, 1990.

Tony Apodaca and Larry Gritz, Advanced RenderMan: Creating CGI for Motion Pictures,

Morgan Kaufmann, 1999.

Saty Raghavachary, Rendering for Beginners: Image Synthesis using RenderMan, Focal Press,

2005.

Randima Fernando, GPU Gems, NVIDIA, 2004.

Matt Pharr, Randima Fernando, GPU Gems 2, NVIDIA, 2005.

Hubert Nguyen, GPU Gems 3, NVIDIA, 2007.

http://www.clockworkcoders.com/oglsl

1.5 Gaming

http://gamedeveloper.texterity.com/gamedeveloper/2008careerguide/

David Hodgson, Bryan Stratten, and Alice Rush, Paid to Play: An Insider’s Guide to Video Game

Careers, Prima, 2006.

Alan Watt and Fabio Policarpo, Advanced Game Development with Programmable Graphics

September 21, 2010 4

Hardware, AK Peters, 2005.

Jacob Habgood and Mark Overmars, The Game Maker’s Apprentice, Apress, 2006.

David Eberly, 3D Game Engine Design: A Practical Approach to Real-Time Computer Graphics,

Morgan Kaufmann, 2006.

Alan Watt and Fabio Policarpo, 3D Games: Real-time Rendering and Software Technology,

Addison-Wesley, 2001.

Eric Lengyel, Mathematics for 3D Game Programming and Computer Graphics, Charles River

Media, 2002.

David Bourg, Physics for Game Developers, O’Reilly and Associates, 2002.

Munlo Coutinho, Dynamic Simulations of Multibody Systems, Springer Verlag, 2001.

Mark DeLoura, Game Programming Gems, Charles River Media, 2000.

Mark DeLoura, Game Programming Gems 2, Charles River Media, 2001.

Mark DeLoura, Game Programming Gems 3, Charles River Media, 2002.

http://www.gamedev.net

http://www.gamasutra.net

http://www.yoyogame.com

1.6 Color and Perception

Maureen Stone, A Field Guide to Digital Color, AK Peters, 2003.

Roy Hall, Illumination and Color in Computer Generated Imagery, Springer-Verlag, 1989.

David Travis, Effective Color Displays, Academic Press, 1991.

L.G. Thorell and W.J. Smith, Using Computer Color Effectively, Prentice Hall, 1990.

Edward Tufte, The Visual Display of Quantitative Information, Graphics Press, 1983.

Edward Tufte, Envisioning Information, Graphics Press, 1990.

Edward Tufte, Visual Explanations, Graphics Press, 1997.

Edward Tufte, Beautiful Evidence, Graphics Press, 2006.

Howard Resnikoff, The Illusion of Reality, Springer-Verlag, 1989.

1.7 Rendering

Andrew Glassner, Principles of Digital Image Synthesis, Morgan Kaufmann, 1995.

September 21, 2010 5

Michael Cohen and John Wallace, Radiosity and Realistic Image Synthesis, Morgan-Kaufmann,

1993.

Andrew Glassner, An Introduction to Ray Tracing, Academic Press, 1989.

Rosalee Wolfe, 3D Graphics: A Visual Approach, Oxford Press.

Ken Joy et al, Image Synthesis, IEEE Computer Society Press, 1988.

1.8 Images

David Ebert et al, Texturing and Modeling, 2nd Edition, Academic Press, 1998.

Alan Watt and Fabio Policarpo, The Computer Image, Addison-Wesley, 1998.

Ron Brinkman, The Art and Science of Digital Compositing, Morgan Kaufmann, 1999.

John Miano, Compressed Image File Formats, Addison-Wesley, 1999.

1.9 Animation

Alan Watt and Mark Watt, Advanced Animation and Rendering Techniques, Addison-Wesley,

1998.

Nadia Magnenat Thalmann and Daniel Thalmann, Interactive Computer Animation, Prentice-

Hall, 1996.

Philip Hayward and Tana Wollen, Future Visions: New Technologies of the Screen, Indiana

University Press, 1993.

1.10 Virtual Reality

John Vince, Virtual Reality Systems, Addison-Wesley, 1995.

1.11 The Web

Don Brutzman and Leonard Daly, X3D: Extensible 3D Graphics for Web Authors, Morgan

Kaufmann, 2007

Rémi Arnaud and Mark Barnes, Collada – Sailing the Gulf of 3D Digital Content Creation, AK

Peters, 2006.

Gene Davis, Learning Java Bindings For OpenGL (JOGL), AuthorHouse, 2004.

Andrea Ames, David Nadeau, John Moreland, The VRML 2.0 Sourcebook, John Wiley & Sons,

1997.

Bruce Eckel, Thinking in Java, Prentice-Hall, 1998.

David Flanagan, Java in a Nutshell, O’Reilly & Associates, 5th edition, 2005.

September 21, 2010 6

David Flanagan, Java Examples in a Nutshell, O’Reilly & Associates, 3rd edition, 2004.

Henry Sowizral, Kevin Rushforth, and Michael Deering, The Java 3D API Specification,

Addison-Wesley, 1998.

Rasmus Lerdorf and Kevin Tatroe, Programming PHP, O’Reilly, 2002.

Yukihiro Matsumoto, Ruby in a Nutshell, O’Reilly, 2003.

1.12 Stereographics

David McAllister, Stereo Computer Graphics and Other True 3D Technologies, Princeton

University Press, 1993.

Shab Levy, Stereoscopic Imaging: A Practical Guide, Gravitram Creations, 2008.

1.13 Graphics Miscellaneous

OpenGL 3.0 Programming Guide, Addison-Wesley, 2009 (7th edition).

Aaftab Munshi, Dan Ginsburg, and Dave Shreiner, OpenGL ES 2.0, Addison-Wesley, 2008.

Tom McReynolds and David Blythe, Advanced Graphics Programming Using OpenGL, Morgan

Kaufmann, 2005.

Edward Angel, OpenGL: A Primer, Addison-Wesley, 2009.

Andrew Glassner, Recreational Computer Graphics, Morgan Kaufmann, 1999.

Anne Spalter, The Computer in the Visual Arts, Addison-Wesley, 1999.

Jef Raskin, The Humane Interface, Addison-Wesley, 2000.

Ben Shneiderman, Designing the User Interface, Addison-Wesley, 1997.

Clark Dodsworth, Digital Illusion, Addison-Wesley, 1997.

Isaac Victor Kerlow, The Art of 3-D: Computer Animation and Imaging, 2000.

Isaac Victor Kerlow and Judson Rosebush, Computer Graphics for Designers and Artists, Van

Nostrand Reinhold, 1986.

Mehmed Kantardzic, Data Mining: Concepts, Models, Methods, and Algorithms, Wiley, 2003.

William Press, Saul Teukolsky, William Vetterling, and Brian Flannery, Numerical Recipes in C,

Second Edition, Cambridge University Press, 1997.

James Skakoon and W. J. King, The Unwritten Laws of Engineering, ASME Press, 2001.

1.14 Software Engineering

Shari Lawrence Pfleeger and Joanne Atlee, Software Engineering Theory and Practice, Prentice

September 21, 2010 7

Hall, 2006.

Tom Demarco and Timothy Lister, Waltzing with Bears, Dorset House Publishing, 2003.

Erich Gamma, Richard Helm, Ralph Johnson, and John M. Vlissides, Design Patterns:

Elements of Reusable Object-Oriented Software, Addison-Wesley, 1994.

1.15 Parallel Programming

David B. Kirk, Wen-mei W. Hwu, Programming Massively Parallel Processors: A Hands-on

Approach, Morgan-Kaufmann, 2010.

Maurice Herlihy and Nir Shavit, The Art of Multiprocessor Programming, Morgan Kaufmann,

2008.

James Reinders, Intel Threading Building Blocks, O’Reilly, 2007.

Bradford Nichols, Dick Buttlar, and Jacqueline Proudx Farrell, Pthreads Programming, O’Reilly,

1998.

Rohit Chandra, Leonardo Dagun, Dave Kohr, Dror Maydan, Jeff McDonald, Ramesh Menon,

Parallel Programming in OpenMP, Morgan Kaufmann, 2001.

2. Periodicals

Computer Graphics and Applications: published by IEEE

(http://www.computer.org, 714-821-8380)

Computer Graphics World: published by Pennwell

(http://www.cgw.com, 603-891-0123)

Journal of Graphics, GPU, and Game Tools: published by A.K. Peters

(http://www akpeters.com, 617-235-2210)

Game Developer: published by CMP Media

(http://www gdmag.com, 415-905-2200)
 (Once a year publishes the Game Career Guide.)

Computer Graphics Quarterly: published by ACM SIGGRAPH
 (http://www.siggraph.org, 212-869-7440)

Computer Graphics Forum:, published by Eurographics
 (http://www.eg.org/EG/Publications/CGF)

Computers & Graphics, published by Elsevier
 (http://www.elsevier.com/locate/cag)

Transactions on Visualization and Computer Graphics: published by IEEE

(http://www.computer.org, 714-821-8380)

September 21, 2010 8

Transactions on Graphics: published by ACM
(http://www.acm.org, 212-869-7440)

Cinefex

(http://www.cinefex.com, 951-781-1917)

3. Professional organizations

ACM Association for Computing Machinery
 http://www.acm.org
 212-869-7440

SIGGRAPH ACM Special Interest Group on Computer Graphics
 http://www.siggraph.org
 212-869-7440

EuroGraphics ... European Association for Computer Graphics
 http://www.eg.org
 Fax: +41-22-757-0318

IEEE Institute of Electrical and Electronic Engineers
 http://www.computer.org
 202-371-0101

IGDA International Game Developers Association
 http://www.igda.org
 856-423-2990

SIGCHI ACM Special Interest Group on Computer-Human Interfaces
 http://www.acm.org/sigchi
 212-869-7440

NAB National Association of Broadcasters
 http://www.nab.org
 800-521-8624

ASME American Society of Mechanical Engineers
 http://www.asme.org
 800-THE-ASME

4. Conferences

ACM SIGGRAPH:
2011: Vancouver, BC – August 8-12
http://www.siggraph.org/s2010

SIGGRAPH Asia:

2010: Seoul, Korea – December 15-18
http://drupal.siggraph.org/asia2010

IEEE Visualization:

2010: Salt Lake City, UT – October 24-29

September 21, 2010 9

http://vis.computer.org

Eurographics
 2011: Llandudno, UK – April 11-15
 http://eg2011.bangor.ac.uk/

Game Developers Conference:

2011: San Francisco, CA – February 28 – March 4
http://www.gdconf.com

E3Expo

2011: Los Angeles, CA – June 6-10
 http://www.e3expo.com

PAX (Penny Arcade Expo)

2010: Seattle, WA – September 3-5
 http://www.paxsite.com

ASME International Design Engineering Technical Conferences (includes the Computers and

Information in Engineering conference):
2010: Montreal, Quebec – August 15-18
http://www.asmeconferences.org

National Association of Broadcasters (NAB):

2011: Las Vegas, NV – April 9-14
http://www.nab.org

ACM SIGCHI:

2011: Vancouver, BC – May 7-12
http://www.acm.org/sigchi

ACM SIGARCH / IEEE Supercomputing:

2010: New Orleans -- November 13-19
http://www.supercomputing.org

5. Graphics Performance Characterization

The GPC web site tabulates graphics display speeds for a variety of vendors' workstation
products. To get the information, visit:

 http://www.spec.org/benchmarks.html#gwpg

