
SIGGRAPH ASIA Course

Practical Rigid Body Physics for Games

Abstract

This course concerns real-time rigid body simulation and its
application in video games. The means of achieving the twin aims of
high-speed and stable simulations under the limits imposed by a high
frame rate of 60 FPS will be examined from a practical standpoint.
Methods examined will be the Constraint Based Method (LCP) and
the Impulse Based Method, commonly used in both commercial and
open-source engines.

As iterative solvers are used as the basic technology for modern
physics engines, stability and speed are essentially two sides of the
same coin. Focus will therefore be placed on achieving stability in the
simulation, using as few iterations as possible. After introducing the
latest knowledge garnered from SIGGRAPH and GDC, I will
introduce and explain some effective reform measures we have
developed.

In the latest game platforms, simulation parallelization has become
essential technology. The application of parallelization technology
developed in the field of high performance computing to game engine
development will be explored through reference to practical examples.
We will perform real-time demonstrations of our in-house developed
physics simulator to examine the effectiveness of both existing
methods and our own refined methods.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1665817.1665831&domain=pdf&date_stamp=2009-12-16

Biography

Jumpei Tsuda, Senior Expert, Koei Co., Ltd.
Began his career as a solid modeling system development engineer.
Joined Koei, where he first worked in crowd AI, before moving on to
research and development roles in game development, covering such
fields as collision detection, physics simulation and motion control.

Syllabus

Background [25 minutes]
 - Constraint Based Method
 - Impulse Based Method
 - Iterative Solver

Acceleration and Stabilization Techniques [35 minutes]
 - Slop, Permutation, Warm Start
 - Shock Propagation
 - Weight Amplification (our method)
 - Aggressive Sleep (our method)
 - Demo

Parallelization Techniques [35 minutes]
 - Multi Color Ordering (Argebraic and Graphic)
 - Cell-like Ordering (our method)
 - Demo

Q&A [10 minutes]

1

Practical Rigid Body
Physics for Games

KOEI Co., Ltd.
Technical Development Division
Jumpei Tsuda

2

The Physics of Rigid Bodies
(with Constraints)

3

Linear:
F = m
(F:force, m:mass, :acceleration)

Rotational:
τ = I + ω × Iω
(τ:torque, I:inertia tensor, ω:angular velocity)

ω&

v&
v&

Motion Equation

4

Constraint Based Method (CBM)

� [Erleb05], [Baraff89]
� Calculate the force that the constraint exerts on objects.
� Insert the constraint force into the motion equation's F and τ.
� Then solve the same way as if there was no constraint.

=

External force

Constraint force

5

Object A is colliding with object B.
Contact points a and b belong to objects A and B, respectively.
w denotes the velocity of point a relative to point b along the contact normal n.
How can express w ?

rb

ωB

vB

rA

ωA

vA

n

ra

w

a
b

Object B

Object A

vA = COG velocity of object A

vB = COG velocity of object B

ωA = angular velocity of object A

ωB = angular velocity of object B

ra = COG of object A → point a

rb = COG of object B → point b

Relative Velocity

6

Relative Velocity
Represent the relative velocity w
along the contact normal n
with
vA,vB,ωA,and ωB

Object B (COG velocity vB, angular velocity ωB)

vb

va

va- vb

w

n

a
b

-vb

Object A (COG velocity vA, angular velocity ωA)

7

w = n · (va - vb)
= n · (vA + ωA × ra - vB - ωB × rb)
= n · vA + ra × n · ωA - n · vB - rb × n · ωB

= (nT, (ra × n)T, -nT, -(rb × n)T)

= (JA, JB)

= Ju

Relative Velocity

vA
ωA
vB
ωB

uA
uB

[JA ∈ R1x6, JB ∈ R1x6, uA ∈ R6x1, uB ∈ R6x1]

[J ∈ R1x12, u ∈ R12x1]

8

Constraint Condition
Therefore, the condition
"a collision does not penetrate"
is given by

Ju ≧ 0

Object A (COG velocity vA, angular velocity ωA)

Object B (COG velocity vB, angular velocity ωB)

vb

va

va- vb

Ju

n

a
b

-vb

9

Constraint Condition

In general, the constraint condition
can be described by

Ju ≧ 0 (no penetration,
movement range limitation, etc.)

or
Ju = 0 (joints, etc.)

10

Constraint Force Direction
Suppose that J has been determined, then

Direction of constraint force = JT

Why is this?
· J represents the direction in which the object cannot move any further.
· There is no "resistance" in any direction in which the object can move,

so no other forces arise.
· The force only arises in the direction in which the object cannot move.

For detailed analysis, see [Catt08]

11

Handle mass and Inertia tensor together.

M =

IzzIzyIzx000
IyzIyyIyx000
IxzIxyIxx000
000m00
0000m0
00000m

Mass Matrix

12

Introducing the Force
Velocity after one timestep is given by

u' = u + × Δt
= u + M-1(Fexternal + Fconstraint)Δt

If the constraint still exists after one timestep

Ju' = Ju + JM-1(Fexternal + Fconstraint)Δt ≧ 0

Suppose the constraint force is of magnitude O in the direction JT

Ju' = Ju + JM-1(Fexternal + JTO)Δt ≧ 0

= JM-1JTOΔt + J(u + M-1FexternalΔt) ≧ 0

u&

13

Introducing the Force

For simplicity we incorporate Δt into the O term

JM-1JTO + b ≧ 0 (no penetration,
movement range limitation, etc.)

or
JM-1JTO + b = 0 (joints, etc.)

14

Multibody Physics

On-face constraint = bilateral constraint

Contact point = unilateral constraint

Constraint axis

a b

d

c
Object 0

Object 1

Object 2
Assume no friction on
any surface

15

Constraint Matrix

Only 12 elements are effective in each row

Ja,0 Ja,1

Jb,0 Jb,1 0

Jc,0 0 Jc,2

0 Jd,1 Jd,2

Object 0 Object 1 Object 2

Ja =

Jb =

Jc =

Jd =

Number of
constraints

Number of objects

Create a matrix representing the entire system of constraints.

0

16

Constraint Force

Ja,1
T

Ja,0
T

× Oa + Jb,1
T

Jb,0
T

× Ob +

Jc,2
T

Jc,0
T

× Oc +

Jd,2
T

Jd,1
T × Od

Constraint force on
Object 0 =

Constraint force on
Object 1 =

Constraint force on
Object 2 =

Ja
T Jb

T Jc
T Jd

T

0 0

0

0

17

Constraint Formulation [Erleb05]

M0
-1

M1
-1

M2
-1

u0 +

u1 +

u2 +

+ F0,ext

+ F1,ext

+ F2,ext

Oa

Ob

Oc

wa =

wb =

wc =

wd =

J M-1 JT

External forceConstraint force

Each object's acceleration

Each object's velocity after one step

Relative velocity along each constraint axis after one step

Od

Δt

18

Constraint Formulation

wa

wb

wc

wd

= JM-1JTλΔt + J(u + M-1FextΔt) = Aλ + b

(For simplicity, Δt is incorporated into λ on
the right-hand side)

19

Constraint Formulation

Now we have equations...

with mixed equalities and inequalities!

Aλ + b =

wa ≧ 0
wb ≧ 0
wc = 0
wd ≧ 0

a b

d

c
wa≧0 wb≧0 wc = 0

wd≧ 0

20

LCP(Linear Complementary Problem)

Take w = Aλ + b .
Solve for λ that
satisfies the following:

O = O min then w ＞ 0
O min＜ O ＜ O max then w = 0
O = O max then w ＜ 0

For more details, see [AIMMS07]

Omin Omax
O

w

21

LCP
With the LCP we can describe many different constraints in a unified
fashion.(Only red items are valid)

Non-penetration constraint (Omin＝ 0, Omax＝ ∞)
O ＝ 0 then w ＞ 0
0 ＜O ＜∞ then w ＝ 0
O ＝ ∞ then w ＜ 0

Bilateral constraint (Omin＝-∞, Omax＝ ∞)
O ＝ -∞ then w ＞ 0

-∞＜O＜∞ then w ＝ 0
O ＝ ∞ then w ＜ 0

22

Gauss-Seidel Method (GSM)
Transform a linear equation as follows

a22a21a20

a12a11a10

a02a01a00

x2

x1

x0

b2

b1

b0

=

x2

x1

x0

b2/a22

b1/a11

b0/a00

=
0-a21/a22-a20/a22

-a12/a110-a10/a11

-a02/a00-a01/a000

x2

x1

x0

+

-a2200
0-a110
00-a00

x2

x1

x0

b2

b1

b0

=
0a21a20

a120a10

a02a010

x2

x1

x0

-

23

Gauss-Seidel Method
Consider the transformed equation to be an "update expression."
The k th update is

Suppose xk+1 = xk = xconv after some updates,
xconv is the solution to the original equation.
(This is trivially shown by tracing the transformation back.)

bA �
¸
¸
¸

¹

·

¨
¨
¨

©

§

¸
¸
¸

¹

·

¨
¨
¨

©

§

�

�

�

x

x
x

x

x
x

k

k

k

k

k

k

2

1

0

1
2

1
1

1
0

24

Use the results of previous rows to update the current row immediately.

bxaxaxax kkkk
0202101000

1
0 ��� �

bxaxaxax kkkk
1212111

1
010

1
1 ��� ��

bxaxaxax kkkk
2222

1
121

1
020

1
2 ��� ���

Gauss-Seidel Method

25

Projected Gauss-Seidel Method

An effective means for solving LCP [Cottle92]

Clamp O at every iteration.

O = clamp(O, Omin, Omax)

That's all.

26

Why can this solve for the LCP?

Suppose that A = JM-1JT, then diagonal elements akk of A are positive.
k' th row of expression w = Aλ + b is

wk = ak1O1+ ak2O2+…+ akkOk+…+ akn-1On-1+ aknOn + bk

When Omin＜Ok＜Omax

wk is the k th row of equation Aλ + b = 0 , so it will converge to 0

When Ok＜Omin, if we let Ok← Omin then

wk becomes a larger value than before the clamp. i.e. it will converge to wk＞ 0

When Ok＞Omax, if we let Ok← Omax then

wk becomes a smaller value than before the clamp. i.e. it will converge to wk＜ 0

Projected Gauss-Seidel Method

27

� [Guendelman03], [Mirtich95]
� Assume a constraint is a series of collisions.
� With every collision, a small impulse is applied.
� Many types of constraints are expressible.
�collision, non-penetration, joint, etc.

Impulse Based Method (IBM)

28

Conservation of momentum
m0v'0 + m1v'1 = m0v0 + m1v1

Collide two objects iteratively
and propagate the force.

m

m

V

V
Iteration 1

m

m

v

v → 0

m

m

v → 0.5v

0 → 0.5v

m

m

0.5v

0.5v → 0

m

m

0.5v → 0.25v

0 → 0.25v

m

m

0.25v

0.25v → 0

m

m

0.25v → 0.125v

0 → 0.125v

Coefficients of restitution set to 0

Example of rest contact

Impulse Based Method

Iteration 2

Iteration 3

29

Recall the constraint condition.

The i th row of this expression is

The i th row of J includes only 12 effective elements
corresponding to two objects interacting with each other.

Aλ + b = Ju'

CBM vs. IBM

6k Ai,kOk + bi = 6k Ji,ku'k

30

Therefore, when using GSM, processing one row is equal to
calculating the O generated by the interaction of these two objects.

O has been multiplied by Δt , so this is equal to an impulse.

Moreover, the O s (=Impulses) of previous rows are used to
calculate the current row's O immediately. This means that the
new velocity which has been updated by other contact or joint
forces is used to calculate the current O (=Impulse) within an
iteration.

CBM vs. IBM

31

Essentially,

CBM with GSM-like iterative solving ＝ IBM.

So, the following discussion can be applied to both methods.

CBM vs. IBM

32

Stabilization and Performance

33

Stabilization and Performance

� What is stabilization?
� When the forces are balanced the object will be at rest or

moving with constant velocity.
� Stabilization and performance optimization are one and

the same
� The faster a system is stabilized, the fewer iterations the

solver has to process.
� Sleep functions do not contribute to stability
� Once the system is stabilized, then you can sleep it.

34

Situations requiring Stability

� Stacking
�Poor stability leads to fall-apart.

� Complex joint interactions (ragdoll phys.,etc.)
�Poor stability means the object won't ever "die."

35

Stabilization Techniques

� Slop (tolerance of penetration)
� Permutation (exchange of rows)
� Warm Start (initialize with previous step)
� Shock Propagation (remedy for stacking)

36

Stabilization Techniques

� Weight Amplification (our method)
�an improved version of Shock Propagation

� Aggressive Sleep (our method)
�an improved version of Sleep

37

Resolving Penetration
When an object penetrates, add velocity such as to cancel out the
penetration.
The depth of penetration is d,
and the relative velocity after one step is u'.
Then the constraint condition is

Ju' ≧ verror

where

verror = kd /Δt (k is a coefficient of reduction less than 1)

d

38

Slop (Tolerance of Penetration)
If we merely insert the penetration-canceling velocity verror into the equations
then oscillation occurs. [Catt08]

Apply verror Freefall

OvershootObject
penetrates

Object penetrates again

39

Slop (Tolerance of Penetration)
We mustn't completely cancel out penetration.
Allow penetration down to a depth dslop → produce a stable support force

verror = (d - dslop)/Δ t

Apply verror verror= 0

Allow penetration
down to dSlop

Object
penetrates

Stabilizes with small
penetration

dSlop
d

40

Permutation

� Every row of the LCP corresponds to a constraint.
� The stacking order is often reflected strongly in the

constraint matrix.
� If you solve in the stacking order then errors accumulate.
� The simulation becomes unstable.

� Randomly rearrange rows of the matrix before starting
the solver.

41

Warm Start

� [Catt05], [Erleb05]
� The Gauss-Seidel method is an iterative convergence

calculation.
� The closer it starts to the solution, the faster it

converges.
� Take the previous step's results as your new initial

values.
� You will see a huge improvement in

stability/performance.

42

Warm Start

� The previous step's solution is the constraint force O

� In the next step, where will we apply O ?

� Joints are persistent
No searching necessary

� Contact points are not so
Must search to find the identical point

43

Warm Start

� Contact points will change somewhat between steps.
� Apply a semantic ID to each contact point [Moravan04]

Time t Time t +Δ t

Contact point = Vertex 1 of Object 0 & Face 3 of Object 1

Vertex 1 Face 3
Object 0

Object 1
Even if the relative/absolute

coordinates change...

We can semantically
identify the contact

point
Vertex 1

Face 3

44

Stacking

� Why is stacking difficult?
�Must simulate force propagation on multiple levels
�The more levels, the more iterations are needed

A
B C

E
G H

D
F

A, B, C, D, E all exert a force on G.

F and H support some of D's and E's
weight, thereby indirectly affecting G.

45

Shock Propagation

� [Guendelman03]
� A powerful solution to the stacking problem.
� A kind of "fake", but an execellnt idea for real-time simulation.
� Take the "bottom" object's mass to be f.
� Restrict the direction of "force" propagation to "down-to-up".

m = 5kg

m = 4kg

m = f

m = 4kg

46

The Weight Feeling Problem

� This is a side effect of Shock Propagation.
� The system becomes "too stable".

47

The Weight Feeling Problem

A quick solution:
λ0 = the solution when the masses are not changed
λ1 = the solution when the "bottom" is set to m = f

Take a weighted average of the two solutions:
λ = (1 - c)λ0 + cλ1

But...

48

Cost of Shock Propagation

� When applied to the LCP you must run the
simulation twice.
� The performance cost of the solver is doubled.

49

� "First, heat the bathwater to 100℃"
� "That's too hot, so add cold water until it cools

down to 40℃"
� Is there no room for improvement with this

picture?

Improvement of Shock Propagation

Why not heat it to just 40℃ to begin with?

50

Weight Amplification (our method)

� Apply an amplification coefficient c to the "bottom" object.
� c = 1.4 gives very good results.
� This works for stacks of up to tens of objects.

� This fixes the Weight Feeling problem at no additional cost.

m = 5kg

m = 4kg

m = 5kg ╳ c

m = 4kg

51

Sleep

� If an object's velocity is close to zero, exclude
it from the simulation.
� Reduce unnecessary simulation costs.

52

Sleep

� Apply to each "simulation island."
� Can't sleep just individual objects.
� Sleep does not contribute to the simulation's stability.

v = 0.1 v = 0.1

v = 0.0 v = 0.2

v = 0.0

v = 0.0 v = 0.0

v = 0.0 v = 0.0

v = 0.0

Invalid Valid

Sleeping

Not sleeping

53

Aggressive Sleep (our method)

Slop
Contact point creation is stabilized

The structure of the LCP to be solved is also stabilized

Aggressive Sleep
The rows of the LCP corresponding to the resting objects are
fixed (using the previous values)

The structure of the LCP to be solved is also stabilized

54

� The fixed row of the LCP uses the previous step's values (helps performance,
too).

� Can be applied to individual objects.
� Don't have to be careful in determining whether an object is at rest (easily

adjusted)
� The simulation still runs, so objects don't mistakenly stop.

Aggressive Sleep (our method)

v = 0.1 v = 0.1

v = 0.0 v = 0.2

v = 0.0

v = 0.1 v = 0.1

v = 0.0 v = 0.2

v = 0.0

Invalid Valid

Sleeping

Fixed row of
the LCP

55

Result (Stabilization)

Figure 1: 300 boxes stacking (30 stacking stages)

56

Result (Stabilization)

Figure 2: 150 ragdolls stacking (13 objects / ragdoll)

57

Result (Stabilization)

15 times

Slop
Permutation
Warm Start
Weight Amplification

90 times
(at least)

Slop
Permuation
Warm Start

Necessary iterations
for resting

Combination of
stabilization methods

10 times

Slop
Permutation
Warm Start
Weight Amplification
Aggressive Sleep

50 times
(at least)

Slop
Permutation
Warm Start
Weight Amplification

Necessary iterations
for resting

Combination of
stabilization methods

Result of Figure1 Result of Figure2

58

Parallelization

59

Difficulty of Parallelization

easyIntegration
very difficultConstraint Solving
easyConstraint Building
easyNarrow Phase
difficultBroad Phase
DifficultyStage of simulation

60

Constraint Solving

� Constraint forces of bodies are mutually
dependent.
�When using GSM, rows of the coefficient matrix

are mutually dependent.
� Need to find independent parts of process.
� Simulation island?
�Practically efficiency is very low.
�Huge simulation islands appear very often.

61

Finding Independent parts

� Multi Color Ordering
� Red-Black Ordering
� Cell-like Ordering (our method)

62

Multi Color Ordering

� # of colors = # of dependent groups.
� # of colors = # of synchronizations.
� Within a group constraints are independent.
� When moving from group(=color) to group,

synchronization is needed.

63

Multi Color Ordering (Algebraic)
If an element (i, j) of a coefficient matrix is non-zero, assign different
colors to unknowns corresponding to i and j respectively.
[Mifune05] proposed the following code.

float A[N][N]; //coefficient matrix.
int color[N]; //colors of rows.
for (i = 0; i < N; ++i) color[i] = -1;
for (i = 0; i < N; ++i) {

m = 0;
(*)
for (j = 0; j < i; j++) {

if (A[i][j] != 0 && color[j] == m) {
++m;
goto (*);

}
}
color[i] = m;

}

64

Multi Color Ordering (Algebraic)

� By using previous code...

color0

color0

color1

color1

color2

Non-zero element Rows of the same color are independent of each other.
So the solver can handle them in parallel.

Coefficient matrix A

65

Multi Color Ordering (Geometric)

� "Link" means joint or contact.
� Classify links into "batches". [Chen05], [Keogh07]
� Within a batch each link is independent.

body0

body1

body2

body3

body4

body5

body6

batch0

batch1
batch2

66

Multi Color Ordering (Geometric)

�
body0

body1

body2

body3

body4

body5

body6

body0

body1

body2

body3

body4

body5

body6

body0

body1

body2

body3

body4

body5

body6

body0

body1

body2

body3

body4

body5

body6

batch0

batch1 batch2

67

Multi Color Ordering

� Algorithm is relatively simple.
� Synchronization cost tends to increase.
� If a body contacts with n bodies, there would be at

least n synchronizations.

68

Cell-like Ordering (our method)

� A variant of block multi color ordering [Yosui07].
� Exploit contact graph [Hahn88].

step 1. Breadth-first search for links connected to a body.
step 2. Add the links to the current block.
step 3. If the # of links reaches the block granularity, move to

the next block.
step 4. goto step 1.

69

Cell-like Ordering (Analogy)

rigid body

"cell"

"membrane"

"string"

70

Cell-like Ordering

rigid body
batch0-block0
batch0-block1
batch0-block2
batch1-block0
batch1-block1
batch2-block0

71

Cell-like Ordering

� Less synchronization cost.
� Logically 4 synchronizations per iteration.
�"volume" → "face" → "line" → "point"
� In case of thousands of objects.

� Practically 3 synchronizations per iteration.
�"volume(cell)" → "face(membrane)" → "line(string)"
� In case of hundreds of objects.

72

Cell-like Ordering
Within a batch each block is processed in parallel.

block0

batch0

block1

block2

block0

batch1

block1Sync Sync Sync

Iteration

block0

batch2

Serial

Pa
ra

lle
l

73

� Within a batch each block is independent.
� i.e. parallelizable.

� Block Granularity is flexible.
�On recent game platforms, this is important.

� Only graph search is necessary.
�Geometric calculation not necessary.

Cell-like Ordering

74

l :link (joint or contact).
b, b0, b1 :body (rigid body).
L :set of links.
B :set of bodies.
Q :set of bodies which works as a queue.
Lij :sets of links subscripts i and j(batch and block indexes, respectively).
Bij :sets of bodies subscripts i and j(batch and block indexes, respectively).
g :granularity.

CellLikeOrdering()
begin

i m 0; j m 0;
L m all links in a scene;
while L z I

B m all bodies connected to L;
while B z I

b m an element of B;
B m B - b;
Lij m I; Bij m I;
SearchAroundBody(b);
j m j + 1;

end while
i m i + 1;
j m 0;

end while
end

Cell-like Ordering (Code)

75

SearchAroundBody(b)
begin

g m 0;
while g < block granularity

for each l connected to b
if l � L

b0 m the body on one side of l;
b1 m the body on the other side of l;
if �({b0, b1} � Bpq z I s.t. p z i � q z j)

Lij m Lij + l;
Bij m Bij + {b0, b1};L m L - l;
B m B - {b0, b1};g m g + 1;
append {b0, b1} to the tale of Q;

end if
end if

end for
b m the first element of Q;
Q m Q - b;

end while
return;

end

Cell-like Ordering (Code)

76

Figure 3: 720 boxes stacking.

Result (Parallelization)

77

Figure 4: 1950 objects (= 150 ragdolls) stacking.

Result (Parallelization)

78

Result (Parallelization)

-

-

11

--91893180474795122717623759Multi Color
Ordering

Cell-like
Ordering

Number of
Os / Batch

Batch #

--------9311167113

109876543210

Result of Figure 3: In case of Multi Color Ordering, there are 9 syncronizations, while Cell-like Ordering
needs only 3 syncronizations.

-

6

11

4878195342669107118662451308437144191Multi Color
Ordering

Cell-like
Ordering

Number of
Os / Batch

Batch #

-------3525517212015

109876543210

Result of Figure 4: In case of Multi Color Ordering, there are 12 syncronizations, while Cell-like Ordering
needs only 4 syncronizations.

79

References
[AIMMS07] AIMMS Language Reference.

http://www.aimms.com/aimms/download/manuals/AIMMS3LR_MixedComplementarity.pdf
[Baraff 89] David Baraff. Analytical method for dynamics simulation of nonpenetrating

bodies. Computer Graphics Vol. 23, No. 3, 223-232, 1989.
[Catt08] Erin Catto. Modeling and Solving constraints. GDC2008 Tutorial Note.

[Catt05] Erin Catt. Iterative Dynamics with Temporal Coherence.
http://www.continuousphysics.com/ftp/pub/test/physics/papers/IterativeDynamics.pdf

[Chen07] Yen-Kuang Chen et al. High-Performance Physical Simulations on Next-Generation
Architecture with Many Cores. http://www.intel.com/technology/itj/2007/v11i3/8-
simulations/4-methodology.htm

[Cottle92] R.W.Cottle et al. The Linear Complementarity Problem. Academic Press.
[Erleb05] Kenny Erleben. Stable, robust, and versatile multibody dynamics animation. PhD.

thesis, Department of Computer Science, University of Copenhagen, Denmark, 2005.

80

[Guendelman03] Eran Guendelman et al. Nonconvex rigid bodies with stacking. ACM
Tansaction on Graphics, Vol. 22 Issue 3, July 2003.

[Hahn88] James K. Hahn. Realistic Animation of Rigid Bodies. Computer Graphics, Vol. 22
Number 4, August 1988.

[Iwashita01] Takeshi Iwashita et al. Algebraic Multi-Color Ordering Method for Parallelized
ICCG Solver in Unstructured Finite Element Analysis.
http://www.tokyo.rist.or.jp/sss2001/Abst/P_Iwashita_Takeshi.pdf

[Keogh07] Chris Keogh. Physics in Games.
http://boombox.ucs.ed.ac.uk/physicspodcasts/genint/2007/resources/ChrisKeogh.pps

[Mifune05] T. Mifune et al. A Parallel Algebraic Multigrid Preconditioner Using Algebraic
Multicolor Ordering for Magnetic Finite Element Analyses. http://www.fz-juelich.de/nic-
series/volume33/237.pdf

[Mirtich95] Brian Mirtich. Impulse-based simulation of rigid bodies. Proceedings of the 1995
symposium on Interactive 3D graphics.

References

81

[Moravan04] Adam Moravanszky et al. Fast Contact Reduction for Dynamics Simulation.
Game Programming Gems 4, Charles River Media.

[Yosui07] Kuniaki Yosui et al. A Parellel Multigrid Solver for High Frequency
Electromagnetic Field Analyses with Small-scale PC Cluster. Electronics and
Communication in Japan, Vol. 127 Issue 8, 2007.

References

