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Chapter 1

Camera Control in
Computer Graphics

Models, Techniques and Applications

Category
Computer Animation

1.1 Summary

Camera control is required in nearly all interactive 3D applications and presents
a particular combination of technical challenges for which there have been a
number of recent proposals. This course presents current and novel research
ideas to the management of a user’s viewpoint on a scene in interactive ap-
proaches, semi-automatic camera positioning, and fully declarative approaches,
covering a range of techniques from specific path-planning, management of oc-
clusion and modelling of high-level communicative goals.

1.2 Course Abstract

Our aim is to characterise the spectrum of applications that require automated
camera control, present a summary of state-of-the-art models and techniques,
and identify both promising avenues and hot topics for future research. Impor-
tantly, our presentation will be rigorous and synthetic, classifying the numerous
techniques and identifying the representational the limits and representational
commitments of each.

Approaches range from completely interactive techniques that find their
value in the possible mappings they propose between the user input and the
camera coordinates, to complete automated paradigms whereby the camera
moves and jumps according to high-level scenario-oriented goals. Between these
extremes exists the automated approaches, with limited expressiveness, that
utilise algebraic techniques and constraint-based optimisation. Our presentation
of these approaches will include numerous live examples from both commercial
systems and research prototypes.
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A specific part of the course will be dedicated to current tough issues such as
the proper handling of visibility for complex and/or multiple targets in dynamic
environments.

The audience will get a broad overview of the state of the art in the domain
and will have a range of detailed techniques that can be easily implemented.

1.3 Intended Audience

In addition to graphics researchers, who have a general interest in many con-
temporary issues in computer graphics, we anticipate interest from:

• computer games designers and developers;

• data visualisation and educational software developers and practitioners;

• graphics hardware vendors;

• people with an interest in the application of film theories to computer
graphics.

1.4 Prerequisites

This course is accessible to any computer scientist involved in computer graph-
ics. Though camera control is at the intersection of numerous domains (path-
planning, visibility, view-point computation, cinematography), the course is
built for beginners and offers a comprehensive overview of the domain. Most
techniques are based on well-known fundamentals that will be recalled shortly
(planning, viewpoint computation, optimization techniques) and the presenta-
tion will encompass numerous detailed illustrations and examples of applica-
tions.

1.5 Presenters

Marc Christie is an INRIA researcher in the Bunraku team at INRIA
France and visiting professor from Nantes University. His research topic is lo-
cated at the intersection of constraint solving techniques and computer graphics.
He has been publishing contributions both in constraint and graphics communi-
ties related to the problem of declarative and real-time camera control systems.
He has presented a State of the Art in Virtual Camera Control at Eurographics
2006 with Patrick Olivier and works on spatial and temporal partitioning tech-
niques to characterize and reason on editing possibilities in virtual environments.
He is a reviewer of well-known conferences (IJCAI, ECAI, EG, Siggraph).

Patrick Olivier is a senior lecturer in Newcastle University, UK. Dr Olivier
has specific expertise in the link between artificial intelligence and computer
graphics, in particular, automated reasoning about graphical representations.
He is an active member of the artificial intelligence and graphics communities
organising many workshops and symposia at AAAI, ECAI and IJCAI, he has
edited several books on cognitive and computational aspects of spatial reasoning
was the founding editor of the Journal of Spatial Cognition and Computation
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and the co-editor with Steve Feiner of the Journal of Virtual Reality’s recent
special issue on Language, Speech and Gesture.

1.6 Interest

Camera control is an accessible, yet challenging, problem that any developer of
interactive 3D graphics applications has encountered. Camera control frame-
works must draw on both the mathematical rigor of spatial reasoning and path-
planning, and the insights of cognitive science and psychological studies of visual
perception and aesthetics.

Recently there has been a recent dramatic rise in interest in the field as
proved by accepted publications in major events and journals: Wayfinder (EG2004),
Semantic-space partitions (EG2005), Learning good views for intelligent gal-
leries (EG2009), Viewpoint selection for intervention planning (IEEE VGTC
2007), Motion overview of human actions (Siggraph Asia 2008), Determination
of camera parameters for character motions (The Visual Computer, 2008).

This rise in interest demonstrates the dynamism around the theme of cam-
era control, coming from both an increasing need in presenting and navigating
in large environments (data sets or realistic geometries), and increasing perfor-
mances in CPU/GPU that foster possibilities that were before out of reach.
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Chapter 2

Syllabus

2.1 Session 1: Introduction to camera control
(slides 1 – 17)

We first introduce the motivations for automating camera control. We study
three classes of application: computer games, modelling tools and multimodal
systems. For each we identify key issues, the prevailing solutions (in outline) and
their shortcoming. A key feature of our analysis of camera control in practice is
the ad hoc nature of the formulations and solving techniques, and the complete
absence of cinematic sophistication (i.e. no utilisation of anything resembling a
grammar of film).

2.2 Session 2: Photography and cinematogra-
phy (slides 18 – 43)

A direct insight can be offered by the use of real-world cameras from reports
of photography and cinematography practice [Mascelli65, Katz91]. We describe
in details the principles of camera positioning (where to set the camera) and
camera composition (how to arrange elements on the screen). We introduce
one of the key insights for camera control, that an algorithmic formulation of
cinematic principles must always be performed in relation to an application
domain (i.e. there is no general formulation).

2.3 Session 3: Interactive camera control (slides
44 – 73)

This session reviews the possible mappings of user inputs to camera parame-
ters by referring to Ware and Osborne’s classification of interaction metaphors:
camera in hand, world in hand and flying vehicle. Each metaphor has spe-
cialised applications, e.g. scene in hand allows to swivel around an object, the
flying vehicle metaphor to navigate in large environments. A number of ac-
counts we present have reported techniques to switch between these metaphors,
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and have reported wider applicability. We further detail how interactive navi-
gation approaches in complex environments such as virtual museums, buildings
or factories strongly rely on path-planning results. The session will emphasize
on representative applications and will detail the related algorithms at a real
practical level.

2.4 Session 4: Automated camera control (slides
74 – 104

This session covers the approaches that draw on the expressiveness of cinematog-
raphy in the formulation of declarative camera control systems. The scene is
described in terms of image properties which are in turn converted into relations
between the degrees of freedom of the camera and the environment in order to
construct adequate shots and camera paths. Such camera control problems can
be formulated as either as a constraint-based system or as an optimisation prob-
lem, or more effectively as hybrid of both. Systems vary in their expressiveness
(range and nature of image properties that are considered) and in the charac-
teristics of the solving techniques (discrete or continuous nature, determinism,
completeness).

2.5 Session 5: Handling occlusion (slides 105 –
136)

This session first explores the nature of occlusion (partial, temporal) over differ-
ent representations of occluders (points, bounding volumes, extact geometry and
representative shapes) and different visibility models. A detailed comparison is
performed between ray-casting occlusion detection and hardware rendering tech-
niques through numerous examples. We illustrate the strong correlation with
penumbra maps and explore possible ways to adapt the models and techniques.
We present recent results in the domain. The main computational issues are
identified and we sketch promissing research directions.

2.6 Session 6: Trends in and open issues (slides
137 – 146)

This final session discusses the problems related to the actual deployment of
these techniques and directions for future research, including (1) augmenting the
expressiveness by considering cognitively well-founded perceptual and aesthetic
properties; and (2) the development of editing constraints (for discontinuous
shot camera transitions).
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Chapter 3

Annotated Slides

7



Self-introduction to the presenters and their backgrounds:
• Marc Christie (INRIA, France)
• Patrick Olivier (Newcastle University, UK)
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From an applications perspective, approaches to camera control can be
distinguished on the basis of whether the user exercises some degree of
interactive control, or the application assumes full control of the camera itself.
Interactive approaches propose a set of mappings between the dimensions of
the user input device (e.g. mouse, keyboard) and the camera parameters. The
nature and complexity of the mappings are highly dependent on the targeted
application. Low-level approaches rely on reactive techniques borrowed from
robotics and sensor planning, where the behavior of the camera is driven in
direct response to visual properties in the current image. Constraint-based and
optimization-based approaches reflect a move towards higher-level control in
which the user specifies desired image properties for which the camera
parameters and paths are computed using general purpose solving
mechanisms. The range, nature and specificity of the properties characterize
the expressiveness of the approach.

2M. Christie & P. Olivier
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Broad discussion of what we expect people to get out of this and what the
attendees experience of camera control has been in the past.

3M. Christie & P. Olivier

Siggraph Asia 2009 Courses: Camera Control in Computer Graphics



While most approaches have been developed in response to the specific
requirements of an application domain, there are many common difficulties
including the number of degrees of freedom, the computational complexity
related to any path-planning problem, and the evaluation and avoidance of
occlusion.

Our tutorial in camera control progresses from motivations (the applications
and general cinematography practice) interactive approaches to fully
automated control. After characterizing the requirements of camera control in a
number of key applications, we discuss the relevance of photographic and
cinematographic
practice. We then consider contrasting proposals for user control of a camera
and fully automated control. Throughout we emphasize the principal
challenges for camera control, and conclude with a discussion of the impact of
occlusion and techniques for dealing with it within different camera control
formulations

4M. Christie & P. Olivier
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Smart Graphics is grounded in a deep understanding of human abilities,
activities, and desires. This understanding arises through the integration of
fields such as art, design, and the social, cognitive, and perceptual sciences.
Insights are realized in the form of novel methods for producing and interacting
with rich graphical displays often utilizing established techniques from
Computer Graphics, Artificial Intelligence, and Computer Science in general.
Such interfaces present content that: engages the user and is aesthetically
satisfying participates in human cognition as external or distributed
representations is sensitive to the real-time demands of the interaction in the
context of the available computational resources and adapts the form of the
output according to a wider set of constraints such as an individual's
perceptual, attentive, and motor abilities and the nature of the presentation
media and available interaction devices.

We understand automated and even assisted camera control within this
broader intellectual vision.

5M. Christie & P. Olivier
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From an applications perspective, approaches to camera control can be
distinguished on the basis of whether the user exercises some degree of
interactive control, or the application assumes full control of the camera itself.
Interactive approaches propose a set of mappings between the dimensions of
the user input device (e.g. mouse, keyboard) and the camera parameters. The
nature and complexity of the mappings are highly dependent on the targeted
application. Low-level approaches rely on reactive techniques borrowed from
robotics and sensor planning, where the behavior of the camera is driven in
direct response to visual properties in the current image. Constraint-based and
optimization-based approaches reflect a move towards higher-level control in
which the user specifies desired image properties for which the camera
parameters and paths are computed using general purpose solving
mechanisms. The range, nature and specificity of the properties characterize
the expressiveness of the approach.
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The requirements for interactive and automated approaches to camera control
can in part be found in the use and control of cameras in a number of common
computer graphics applications. Though existing applications are bound by the
state-of-the art in camera control itself, the goals of the user and existing use
of interactive and automated control, provide us useful insights as to the needs
of future applications.
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In three-dimensional modeling environments, virtual cameras are typically
configured through the specification of the location of the camera and two
vectors that represent the look-at and up directions of the camera. The
specification of camera motion is usually undertaken through a combination of
direct editing and interpolation, such as the use of splines with key frames
and/or control points. Animation of the camera is realized by interpolating the
camera location, up and look-at vectors across key frames. Fine control of
camera speed is provided through the ability to manipulate the velocity graphs
for each curve.

A set of complementary tools provides modelers with the ability to use the
position of a unique static or dynamic target object to constrain the look-at
vector. Modelers may also allow the use of offset parameters to shift the
camera a small amount from the targeted object or path. Similarly, some tools
allow constraints to be added to fix each component of the look-at vector
individually. Physical metaphors are also used to aid tracking, such as virtual
rods that link the camera to a target object. With the possibility to extend the
functionality of modelers through scripting languages and plug-ins, new
controllers for cameras can be readily implemented (e.g. using physics-based
systems). Furthermore, with the rise of image-based rendering, the creation of
cam- era paths using imported sensor data from real cameras is increasingly
popular.

8M. Christie & P. Olivier
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Video of camera control in a 3D modeling tool – illustrating the principal
controls.

9M. Christie & P. Olivier

Siggraph Asia 2009 Courses: Camera Control in Computer Graphics



In practice, the underlying camera control model (i.e. two spline curves) is not
well suited to describing the behavioral characteristics of a real world
cameraman, or the mechanical properties of real camera systems. Despite the
fact that a number of proposals exist for describing cinematic practice in terms
of camera position, orientation and movement, most modelers have not
attempted to explicitly incorporate such notions in their tools. Even basic
functionality,
such as automatically moving to an unoccluded view of a focal object, cannot
be found in current commercial modeling environments.

This mismatch can in part be explained by the general utility that most
modeling environments strive to achieve. Cinematic terminology is largely
derived from character oriented shot compositions, such as over-the-shoulder
shots, close shots and mid shots. Operating in these terms would require the
semantic (rather than just geometric) representation of objects. Furthermore,
the problem of translating most cinematographic notions into controllers is
non-trivial, for example, even the seemingly simple notion of a shot will
encompass a large set of possible, and often distinct, solutions. However,
providing users with high-level tools based on cinematic constructs for the
specification of cameras and camera paths, would represent a significant
advance over the existing key-frame and velocity graph-based controls.

10M. Christie & P. Olivier
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The generation of multimodal output (e.g. natural language and graphics) involves
careful coordination of the component modalities. Typically such systems have been
developed in the domain of education and training and in particular need to address
the problem of coordinating the choice of vantage point from which to display the
objects being described, or referred to, linguistically. For example, a direct linguistic
reference to an object (e.g. the handle on the door) usually requires that the object
(i.e. the handle) is no more than partially occluded in the shot. To satisfy such
coordination constraints, multimodal generation
systems have relied heavily on the use of default viewpoints from which unoccluded
views of the elements of discourse are likely to be achieved. Ray casting is used to
trivially accept or reject viewpoints although attempts have been made to address
the application of constraint‐based camera planning in the development of a
prototype intelligent multimedia tutorial system. Alternative approaches use
cutaways and ghosting, standard devices in engineering graphics, by which occluding
elements of scene are removed either by direct surgery on the polygons,
manipulation of the depth buffer or object transparency.

11M. Christie & P. Olivier
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Beyond simple object references, the coordination of language and graphics
poses a number of interesting problems for camera control. Indeed, such
applications are a rich source of constraints on a camera, as the semantics of
some spatial terms can only be interpreted by reference to an appropriate
perspective. For example, descriptions involving spatial prepositions (e.g. in
front of , left of ) and dimensional adjectives (e.g. big, wide) assume a
particular vantage point. For projective prepositions the choice of a deictic or
intrinsic reference frame, for example, for the interpretation of in front, directly
depends on the viewpoint of a hypothetical viewer.
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In visualization systems, multidimensional data sets may be mapped to
different three-dimensional spatial entities with a view to furnishing users with
an intuitive and interactive framework to explore the underlying relations.
Typically, such data sets, and the resulting visualizations, are often vast
landscapes of geometry within which manual interactive control is extremely
difficult. Visualization is an application for which the user requires interactive
control to explore and pursue hypotheses concerning the data. However, user
interaction in such applications is usually restricted to a small number of
navigational idioms, for example, the identification of a number of interesting
points or regions in the data, and the exploration of the remaining data in
relation to these. Automatic camera control and assisted direct camera control,
has the potential to greatly enhance interaction with large data sets.

13M. Christie & P. Olivier
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In practice, even partially automated three-dimensional multimedia generation
requires an interpretation and synthesis framework by which both the
visuospatial properties of a viewpoint can be computed (i.e. the interpretive
framework) and the viewpoint controlled according to the constraints arising
from the semantics of the language used (i.e. the synthesis framework).
Likewise, future scientific and information visualization systems will benefit
greatly from intelligent camera
control algorithms that are sensitive to both the underlying characteristics of
the domain and the task that the user is engaged in. Such adaptive behavior
presupposes the ability to evaluate the perceptual characteristics of a
viewpoint on a scene and the capability to modify it in a manner that is
beneficial to the user.

14M. Christie & P. Olivier
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Interactive computer games serve the benchmark application for camera
control techniques. Most importantly, they impose the necessity for real-time
camera control. A canonical camera control problem involves following one or
more characters whilst simultaneously avoiding occlusions in a highly cluttered
environment. Furthermore, narrative aspects of real-time games can be
supported by judicious choice of shot edits both during and between periods of
actual game play. The increasing geometric complexity of games means that
most deployed camera control algorithms in real-time 3D games rely upon fast
(but fundamentally limited) heuristic occlusion checking techniques, such as
ray casting (see later for a discussion of occlusion).

Camera control in games has received considerably less attention in computer
games than visual realism, though as John Giors (a game developer at
Pandemic Studios) noted, “the camera is the window through which the player
interacts with the simulated world” [Gio04]. Recent console game releases
demonstrate an increasing desire to enhance the portrayal of narrative aspects
of games and furnish players with a more cinematic experience. This requires
the operationalization of the rules and conventions of cinematography. This is
particularly relevant in the case of games that are produced as a film spin-offs,
where mirroring the choices of the director is an important means of relating
the game play to the original cinematic experience.

15M. Christie & P. Olivier
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• First person
Users control the camera (giving them a sense of being the character in virtual environment).
Many games use first person camera views, and the most common genre is the First Person
Shooter (FPS), for example, the Doom and Quake series. Camera control is unproblematic,
since it is directly mapped to the location and orientation of the character.

• Third person
The camera system tracks characters from a distance, generally the view is slightly above and
behind the main character) and responds to both local elements of the environment (to avoid
occlusion) and the character’s interactions (maintaining points of interest in shot). Problems
arise when the shot fails to support important events in the game, for example, when a
character backs‐up against a wall such systems typically default to a frontal view, thereby
disrupting the game play by effectively hiding the activity of opponents. Furthermore, due to
the imprecise nature of the occlusion detection procedures in game camera systems (e.g. ray
casting), partial but often significant, occlusion of the main character is a common
occurrence.

• Action replay
Replays are widely used in modern racing or multi‐character games where there are
significant events that a player might like to review. It is imperative that these replays are
meaningful to the players, such that the elements of the scene and their spatial configuration
are readily identifiable. Interactive storytelling presents a number of interesting
opportunities for camera control. In particular, the explicit representation of both narrative
elements and character roles, relations and emotional states, provides a rich basis on which
to select shots and edits automatically.

16M. Christie & P. Olivier
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Games are inherently different from film in that the camera is usually either
directly or indirectly controlled by players (typically through their control of
characters to which a camera is associated). Furthermore, a game is a
dynamic and real-time environment and game camera systems must be
responsive to action that takes place beyond the focal characters. The
enforcement of frame coherency (smooth changes in camera location and
orientation) is necessary to avoid disorienting players. While the automation of
camera control based on cinematographic principles aims to present
meaningful shots, the use of editing techniques (which are rare) can preserve
game play by presenting jump-cuts or cut-scenes to guide the user. The use of
automated editing and cinematographic techniques in games is currently the
exception rather than the rule.

17M. Christie & P. Olivier
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This section will mainly provide an overview of photography and
cinematography techniques. We will explore fundaments of picture perception
and techniques to properly layout elements to create pleasing, balanced or
dissonant views. We will show how these principles are applied to still shots
e.g. for conveying narrative elements (eg. dominance relations between
characters, creating oppression,...). We will then detail some sets of rules and
conventions founded in cinema to convey actions and narrative elements, for a
broad range of actors configurations and movements, and explore more
fundamental principles such as spatial continuity, continuity of action and of
motion.

We will finally discuss the psychological aspects subtending pictures and
sequence of pictures.

18M. Christie & P. Olivier
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Perception has been mainly influenced by Gestalt theories. These claim that
we perceive a general view, the entire image, rather than isolated elements
(we always need to group elements, either by shape or by size -- see pictures
on next slide) 

One can interestingly analyse camera shots and camera motions with these
theories and furthermore (try to) rely on them to build intended effects (though
filmmakers adopt a more practical approach).

19M. Christie & P. Olivier
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Important perceptual caracteristics (for composition) encompass:
•grouping and organization (one rapidly builds a clustering of shapes, and
identifies groups compared to isolated elements – see next slide)
•balance: visual weight of an element or group of elements on the screen wrt
the whole. Balance helps to emphasize the important elements, as well as
establish relations (eg. equity, dominance) between elements, as well as
moods (balanced vs. unbalanced shots).
•shapes: primitive forms such as leading lines, circles or curves. Convergence
helps to guide the viewer towards a target of interest, while setting up the
relation between the target and his environment (eg. the train and the
character in the bottom picture). One generally avoids lines that divide the
frame into equal parts (a fundamental of the rule of the thirds/fifths), especially
wrt. Horizon in outdoor envrironments. Lines help to structure the attention,
and rely either on geometric elements of the picture (direct or with closure
gestalt), or through invisible elements (direction of gaze, links between multiple
faces in a picture)
•Patterns: repetition of geometric figures. Using a regular repetition (windows
of a building with no persepective) gives a static view, whereas repetition with
a perspective gives a sense of dynamism (see left picture) .
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Contrast (a variation of illuminance) is one of the first visual feature we
percieve in a picture, and helps to establish relations and groups. Here we
refer to contrasts in terms of position (distance between elements), size, colors
and shapes. Connecting stars of the zodiac is one of the first illustration of
contrasts in position. In cinematography and photography, relative locations of
characters in crowds are regularly used to express isolation or integration.

21M. Christie & P. Olivier
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Shots and sequences of shots are motivated by communicative goals.
Emphasizing these goals requires to better guide the attention of the audience,
by structuring the narrative elements in each shot, over the shots (and
between the shots). Visual design consists in organizing the elements on the
screen to draw the audience attention and fulfill the communicative goal. Two
examples are:
•providing new information: since people always connect successive shots as
a whole, new (and important facts) to the narrative need to be emphasized (eg
using convergence, leading lines, …)
•creating expectations: further in the process, at a cognitive level, people try
always to complete the story by guessing the hidden facts, creating and trying
to check their hypothesis. This creates expectations, that one can play with by
hinding/displaying expected/unexpected facts. An unbalanced fact, for
example can create some form of spatial expectation (meaning there may be
another character in the scene, but not seen on the screen)

22M. Christie & P. Olivier
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There is a considerable consensus as to the nature of best practice in
cinematography. Accounts such as Arijon classify the sets of possible
viewpoints, and sequences of viewpoints according to the number of actors
and their location in the environement. Such accounts are apparent in a
number of automated cinematography systems that rely on finite state
machines to operationalize the editing principles, for the specific case of
dialogues.

Higher-level motivations are more difficult to formalize. Mascelli describes
cinematography in broader motivation principles (narrative, spatial and
temporal continuity).

23M. Christie & P. Olivier
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There are multiple aspects to consider when operationalizing rules from the
literature. First the problem is actually two-fold: we distinguish the problem of
viewpoint (and motion) planning, from the problem of editing (when to cut a
shot, and where to move to).

Second, both a single shot and a sequence of shots convey different levels of
information:
•geometric: convey the content of the screen (ie what are the objects on the
screen, where are they located)
•aesthetic: convey balance, unity, by the way elements are organized on the
screen ( leading lines, visual weights, …)
•cogntive: convey the understanding of elements in the narrative (facts, spatial
knowledge of the envrionment, relations between characters, causal effects,
…)
•emotional: convey by multiple means (music, composition, cuts, mental
state,….) the emotional content.

24M. Christie & P. Olivier
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Narrative structure of a film. We distinguish the level of the story (the set of
actions, the causal relations between actions) and the level of the discourse
(how to convey these actions or narrative elements).

The discourse level structures a film into scenes (a scene follows some form of
continuity in the action and in the space), each scene is composed of shots,
separated by cuts. Techniques can be used to interleave scenes (parallel
editing), to complete some partial knowledge, to illustrate competing actions in
time, etc.

How and when to perform cuts in a movie remains a critical issue (and has
consequently received little attention in its operationalization): inappropriate
cuts are very noticeable in movies (since audiences are well educated). And
audience naturally establishes relations between successive shots (see
Kuleshov’s experience).
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Arijon provides a detailed description of shots and cuts for typical staging of
actions, in many configurations (referred as cinematographic idioms). The next
slides will illustrate both common idioms, and idioms to be used in specific
action sets.

26M. Christie & P. Olivier
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Only a subset of shots are appropriate for shooting a character. These are
characterized by the amount of the subject in the screen.
•long shots display the character in relation to its envrionement or to other
characters (eg. for establishing shots)
•full shots frame the character fully on the screen. FS are used to track
moving actors.
•medium shots are classically used in dialogues (we still seed the expressive
parts of the body: hand, shoulders, head)
•close shots are mainly for dialogue, illustrates the body posture as shoulders
are kept in frame
•Medium close up displays mostly the characters face (capture emotions,
follow the speech)
•Extreme close ups are used to emphasize the characters reaction (face,
eyes) or attitude.
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Typical camera sets (idioms) for conversation. A virtual line is drawn between
the actors (the line of interest), and all shots are located on one side of this
line. Then multiple camera viewpoints can be employed: apex shots (we see
both characters, same size on screen), external shots – or over-the-shoulder
shots, internal shots, where only one character is framed, and subjective shots
in which the camera represents the eyes of an actor.

Depending on the stylistic choice of editing, cuts between shots can be more
or less frequent (pace) and dependent on the actors utterances (switching
before each change, or maintaining same viewpoint on exchanges).
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There are many rules to maintain some form of continuity between successive
shots:
•relative placement (ensures spatial continuity): a character framed on one
side of the shot should be maintained on that side for the duration of the
scene. This is modulated by the actions that occur in the scene, the number of
actors involved, and the possibility to cross the line of interest in specific
configurations (occlusion, continuous transition between two viewpoints)
•maintain line of interest while framing a dialogue (spatial continuity)
•maintain relative motion of the character (action continuity). Changing the
direction of the actor on the screen will deliver an impression of running in
different directions as if the character was lost.
•avoid jump cuts: jump cuts occur when the difference between two
successive shots is not strong enough (ie difference in orientation lower than
30 degrees, or no change in the size of the shot)
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Triangle principle. 1 and 3 draw the line of interest, and 2 is the location of the
apex view. Shots are internal (1 character framed) or external (2 characters
framed). Parallel shots frame one of the character from a direction orthogonal
to the line of interest.

External shots (over the shoulder shots) generally give a sens of identification
with the closest character.
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Multiple examples of actors in motion:
•on the left picture: character (a) is moving towards character (b) illustrated by
four successive shots:

•1: external full shot showing (a) moving to (b)
•2: internal reverse close shot showing (a)
•3: external close shot showing (a) and (b)
•3: external reverse shot showing (a) and (b)

•on the middle picture: three shots that show how the character is moving in
the environment. As the character is turning, in the third shot, is it important to
frame the action of turning and cut on this action to illustrate continuity.
•on the right picture: two shots demonstrating character (b) passing in front of
(a). Interesting setup, since though the line of action is broken between the
shots (b is changing direction in successive shots), spatial continuity in picture
maintains the coherency from the audience point of view: character (a) is
maintained as a landmark to avoid disruption.

31M. Christie & P. Olivier

Siggraph Asia 2009 Courses: Camera Control in Computer Graphics



Idioms specific to the doorway action: conveying a character that is crossing
entering/leaving a room:
•on the left: the relative directions is maintained between both shots (camera
lays the same side of the action). An ellipsis can be used here to compress the
time (ie not following the real-time evolution of actions by cutting
obvious/uninteresting aspects): the audience will reconstruct the events
(especially when as simple as crossing the doorway). In an opposite way, the
filmmaker can overlap shots in time (showing the character opening the door
in the first shot, and showing him performing the same action with a slight
overlap in the second) to insist on the importance of the action (which may
create here some sense of suspense).
•on the right: interestingly the line of action is violated between the two scenes.
Yet spatial continuity is still ensured by sharing common objects in the scene
(here the door that is recognizable in both shots).
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The audience should not be aware of the cuts performed by the filmmaker (the
best editor is the one that is not noticeable). Actions are generally used to
support the cuts in edits. Three examples of cuts in action are displayed:
•at the top: for a continuous action, cuts can be performed by a change of size
in the shot (and no change in orientation)
•at the middle: for a short term action, cut is performed by a change of size,
generally at the first third of the duration of the action (heuristic). The action
should be displayed in both shots, which maintains the continuity.
•at the bottom: for a continuous action, the cut is performed when the
character leaves the frame.
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In dialogues, the height of eyes is a noticeable device to establish relationships
between characters. Eyes at the same level deliver a sense of balance
between the characters and supports the narrative in that way. Unbalanced
shots where gazes are at significantly different levels (see right picture) gives a
sense of dominance – which can be emphasized with low-angle/hish angle
shots.

Continuity (especially between internal shots) can be maintained by ensuring
the constant height of the gaze in successive shots (shot/reverse shot).
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Example of Kuleshov’s experiment (1939): establishing relation-ships between
shots. No shot can be considered in isolation: sequences must be considered
in their context. This can be interestingly used to misguide the audience by
letting them build false relationships between facts. Fade-ins and fade-outs
help to cut between scenes (and avoid erroneous interpretations), using a
closure Gesalt (fade-out finishes the sequence).

This draws attention to the need of displaying only appropriate shots (if a shot
is in isolation, audience will build hypothesis on connections). A scene (and
hence a film) must be viewed as a global structured construction of how the
audiences mind and knowledge should evolve in time.
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After this short presentation of techniques employed in both photography and
cinematograpy, we draw some comments on means and techniques to convey
the four levels of information contained in images/movies (though the levels in
a number of cases easily overlap).
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The geometric level can be thaught of by considering documentaries.
Documentaries (should) convey a set of facts and how these facts articulate to
gain a clear knowledge of the temporal and causal organisation of the story.
Thus at the geometric level, main questions are:
•where does the scene take place (and how do we understand it takes place
there – what are the recognizable elements)
•what the the objects and characters we need to display
•how do we organize the discourse level (order in which facts appear)

Current techniques that we review in this course handle properly the issues
related to viewpoint computation (which environement, which objects to see,
which layout of elements). However, contributions to the more general
structure of a narrative (decomposition into scenes) remains the exception.
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To operationalize properties at a perceptual level requires a proper
understanding of how we perceive elements, how we organize them,
recognize them and establish connections and relations. Though there are
many contributions in the field of robotics and image analysis (eg .
understanding a scene for a robot), few contributions only explore the
importance of spatially organizing elements to achieve intended perceptual
goals. Furthermore, the problem is inevitably linked with the issues in staging
(related to the spatial organization) and lighting (related to the perception of
contrasts) , and requires to be looked at as one unique question.
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To operationalize properties at an aesthetic level requires an even deeper
understanding and characterization of visual design: how to characterize
balance and unity? Use of invisible leading lines and perspective lines?

Very few contributions explore such issues (see Bares etal. who change the
framing to enforce composition rules, and Gooch etal. [GRMS01] who explore
neighbour viewpoints to enforce e.g. the rule of the thirds through an
optimisation technique).
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Examples of compositions in Mascelli [Mas65], where invisible leading lines
characterize the dynamism of the picture as well as the relation between
elements. In the first shot, for example, the central character is obviously stuck
between the others, and in a dominated position.
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At a cognitive level, the movie should provide means to properly convey the
relations that subtend the actions, i.e. spatial, temporal and causal. However,
apart from idioms for which we know that they propertly convey such
elements, there are no well founded ways (apart from empirical evidence) to
operationalize cogntive and emotional aspects.
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One axis of progress consists in exploring, in an empirical way, how people
perceive and understand shots, as a basis to automate the computation of
shots and cuts in the conveyance of a narrative.
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Interactive control systems modify the camera set-up in direct response to
user input. The principal design issue is how to map an input device onto the
camera parameters. We detail direct control techniques which rely on
straightforward mappings, environment-based control that merges
environment constraints (visibility, collision) in the mapping, and through-the-
lens approaches that perform interaction on the screen indirectly manipulate
camera parameters.
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A possible representation for the camera, with 7 degrees of freedom:
•3 location degrees (Cartesian coordinates)
•3 orientation degrees (Euler angles)
•1 field of view degree

This model is well suited for direct interaction in that the orientation parameters
naturally represent panoramic, tilt and roll cinematic primitives. However
internal models mostly rely on quaternion-based orientation to avoid
interpolation issues.
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In the domain of camera control, literature displays a large range of mappings
between user inputs and camera parameters. Direct mapping techniques will
associate inputs (mouse coordinates) directly to camera parameters, while
indirect techniques will operate through specific interction widgets (e.g. I-
widgets [Singh06]) or spaces (screen-space [TTLCC] or application-specific
space).
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Another metaphor can be added to Ware&Osborne’s classification: walking
metaphors in which the camera moves in the environment while maintaining
a constant distance (height) from a ground plane [HW97, FPB87].

Applications tend to use multiple metaphors in sequence (flying vehicle for
navigation and world in hand for proximal inspection), and need to propose
smooth transitions between them.
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Techniques have rapidly introduced constraints to augment the usability by
assisting the computation of some degrees of freedom. This is typically
addressed by reducing the dimensionality of the control problem, and/or the
application of physics-based models, vector fields or path planning to constrain
possible movement and avoid obstacles [HW97]. For example, the application
of a physical model to camera motion control has been explored by Turner et
al. [TBGT91]. User inputs are treated as forces acting on a weighted mass
(the camera) and friction and inertia are incorporated to damp degrees of
freedom that are not the user's primary concern.
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This slide illustrates interactive approaches related to object (referred as
proximal inspection) and environment exploration. A certain knowledge of the
environment is utilized to assist the user in his navigation or exploration task.
Such approaches are split according to their local or global awareness of the
3D scene.

Khan et al. [KKS+05] propose an interaction technique for proximal object
inspection that automatically avoids collisions with scene objects and local
environments. The hovercam tries to maintain the camera at both a fixed
distance around the object and (relatively) normal to the surface, following a
hovercraft metaphor. Thus the camera easily turns around corners and pans
along at surfaces, while avoiding both collisions and occlusions. Specific
techniques are devised to manage cavities and sharp turns.
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Left, top and bottom: negociating bumps and holes in proximal inspection
Righ, top and bottom: negociating corners
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In more stylistic way compared to [KKS*05], Burtnyk et al. [BKF+02] propose
an approach in which the camera is constrained to a surface defined around
the object to explore (as in [HW97]). The surfaces are designed to constrain
the camera to yield interesting viewpoints of the object that will guarantee a
certain level of quality in the user's exploratory experience, and automated
transitions are constructed between the edges of different surfaces in the
scene. The user navigation freely in the bounds of the constraint surface, and
on reaching an edge is guided to another constraint surface, or hand-built
transition.
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We now detail techniques that rely on the geometry of the whole environment
to build constraints, that assist the users in either navigation or exploration
tasks.
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Environment-based assistance, for which applications are generally dedicated
to the exploration of complex environments, requires specific approaches that
are related to the more general problem of path-planning. Applications can be
found both in navigation (searching for a precise target) and in exploration
(gathering knowledge in the scene). Motion planning problems in computer
graphics have mostly been inspired by robotics utilizing techniques such as
potential fields, cell decomposition and roadmaps.
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The low cost of implementation and evaluation of potential fields make them a
candidate for applications in real-time contexts.
The efficiency of the method is however overshadowed by its limitations with
respect to the management of local minima as well as difficulties incorporating
highly dynamic environments. Nonetheless, some authors have proposed
extensions such as Beckhaus [Bec02] who relies on dynamic potential fields to
manage changing environments by discretizing the search space using a
uniform rectangular grid and therefore only locally re-computing the potentials.
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In [HW97], the constraint surface is defined by the user, together with a
number of orientation key-points. Recent approaches consider automated
computation of either scalar or vector fields to assist the users both in location
and orientation [TC01, ETT07]. This requires to answer a number of key
issues (handling bottlenecks such as narrow doorways, handling large open
spaces, identifying essential landmarks that make this problem a difficult one).
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Virtual endoscopy enables the exploration of the internal structures of a
patient's anatomy. Difficulties arise in the interactive control of the camera
within the complex internal structures. Ideally important anatomical features
should be emphasized and significant occlusions and confined spaces
avoided. The underlying techniques mostly rely on skeletonization of the
structures and on path planning approaches such as potential fields. For
example, [HMK97] and [CHL+98] report a technique that avoids collisions for
guided navigation in the human colon. The surfaces of the colon and the
center line of the colon are modeled with repulsive and attractive fields
respectively.

In [HMK97], the camera is guided by some repulsive forces from the colonic
surface, attractive ones that push the camera towards a given target, and user
inputs (when pointing an area on the surface). The process is however very
specific to the problem (a more general geometry would lead to many cases of
failure or inappropriate guidance).
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Cell decomposition approaches split the environment into spatial regions
(cells) and build a network that connects the regions. Navigation and
exploration tasks utilize this cell connectivity while enforcing other properties
on the camera. For example, [AVF04] proposed such a technique to ease the
navigation process and achieve shots of important entities and locations.
Using a cell-and portal decomposition of the scene together with an entropy-
based measure of the relevance of each cell critical way-points for the path
could be identified.
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Following an idea similar to Andujar, yet in a more interactive context,
Elmqvuist etal. [ETT07] propose to automate the construction of a navigation
graph between user-defined landmarks. The environment is decomposed into
voxels, each of which is evaluated for visibility against the landmarks. An
adjacency graph is then built between voxels sharing the same landmarks, and
explored with a TSP algorithm to compute the best path that visits all the
landmarks.
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Roadmaps, and especially probabilistic roadmaps are a simple-to-implement
and efficient technique to perform path planning tasks at the level of an
environment. For transition planning (moving from on landmark to another),
target tracking and cut-jumping (switching between viewpoints), the process
needs to be augmented by visibility computation, either in a static way [NO03],
on in a dynamic way [LC08].
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In [NO03] visibility is guaranteed between connected nodes. Such PRMs can
be used in an interactive approach by selecting the most appropriate given the
current configuration and the user inputs. The main drawback lies in the cost
of updating the data structure when considering dynamic elements.

61M. Christie & P. Olivier

Siggraph Asia 2009 Courses: Camera Control in Computer Graphics



Previous approaches generally suffer from their locality (searching for
viewpoints in the local neighborhood of the current camera location). Chang
and Li introduce a probabilistic roadmap technique that helps to reduce this
locality:

•a roadmap is defined in the local basis of the camera target (the roadmap is
built once, and then is only locally modified) 

•paths are searched for in this roadmap by evaluating every configuration wrt.
visibility of the target and possible collision of the path with the environment:

– occluded viewpoints and non reachable viewpoints are removed
from the roadmap

– new viewpoints are added when necessary

•in critical situations, cuts can be performed between viewpoints (cuts are
represented as expensive edges in the roadmap) 

Provides a reactive approach that is more global (lazy-evaluation of the
knowledge in connected edges), and allows cuts.
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In moving further away from the direct manipulation of camera parameters,
through-the-lens techniques enable the control of the screen content.
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Visual servoing techniques relies on the regulation in the final image of a set of
visual features (points, segments, lines).

The image Jacobian (L) expresses the link between the motion of a visual
features (P) in the 2D screen and the motion of the camera (it's a linearization
of the projection relation for the camera configuration).

The key idea is then to invert the equation, in order to express the variation on
camera parameters that correspond to a desired motion of the visual feature
on the screen. For exemple, in order to constrain a mobile 3D point at a given
location on screen, requires to solve Jq=0 at every frame.
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The Jacobian matrix is generally non square (m x n):

-m is the number dofs of the camera (7 for euler-based, 8 for quaternion-
based) 

-n is the number of parameters of the visual features in 2D (2 for a point, 3 for
a line, 4 for a segment) 

The pseudo inverse of the matrix can be computed by Singular Value
Decomposition which is in O(mn^2).

If all camera dofs are not constrained, one can perform secondary tasks (see
details in next slide) through a minimization process.

Solving process is quite efficient (cost of Jacobian + SVD + minimization).

However:

•difficult to balance between primary and secondary tasks

•some tasks cannot be easily expressed as a minimization process
(visibility/occlusion) 
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A technique of choice in real-time gaming environments with 3rd person view

The camera is linked to the character with a virtual rod (more critical with
multiple characters), which reduces the problem to 3 degrees of freedom in a
spherical coordinate system (radius to target, elevation, azimuth) 

In complex environments the first main concern is to maintain – in a
continuous and coherent way -- the visibility of the target (see Part V), and the
second is related to the playability (how to adapt the user controls when the
viewpoint changes).

In games, critical issues do appear in contrived configurations :

•camera blocked in a corner as the character backs up

•camera fails to maintain viewpoint on target of interest (eg, shooting an
opponent) 

These issues are linked to the (restricted) local knowledge of the environment
(in terms of visibility and accessibility).

Shares a set of common issues with the domain of robotics (planning, visibility,
prediction) 
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Halper etal. propose an incremental solving technique for reactive camera
control. A small set of constraints is proposed, and each constraint is solved
with an algebraic expression (except visibility – see Part V). Constraints are
solved in an incremental way (each constraint is applied on the result of the
previous constraint), based for example on a spherical coordinate system
around the target object:

•camera height: the camera is located at a specified height, relative to the
target (fixes elevation) 

•angle of interest: the camera is rotated around the target to satisfy the
requirement (fixes azimuth) 

•size: constrains the distance to the target (fixes raduis) 

•visibility: moves the camera to a location that maximises visibility (see Part V) 

•Look at: constrains the orientation of the camera (ie camera quaternion).

The approach is efficient (simple algebraic computations, visibility is computed
with hardware rendering in low resolution buffers). However the technique is
not that easy to extend to multiple targets, and can suffer from the local
knowledge it has of its environment.
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Reactive approaches represent a set of techniques of first choice in gaming
environments: easy to compute and relatively inexpensive. Main issues are
related to:

•how to properly handle visibility – and how this step can be incorporated into
the solving pipeline

•how to handle frame/path coherency. No metrics are provided. Systems
generally rely on a physical model (mass spring) to damper the camera
motions under sudden changes. Coherency is strongly related to the need of
anticipating the motions of the targets with relation to the environment. Very
few anticipation models are provided (and by nature are very specific).

Screen coherency could be taken into account by provided some measure of
the variation/acceleration of screen velocities. Screen coherency could actually
be decomposed into :

-predictive power (how well does the camera perform in anticipating occlusion) 

-stability (how stable is the camera in critical situations) 

-responsiveness (how fast does the camera handle sudden changes) 
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This section will provide an overview of applications and techniques related to
the automated control of camera parameters, i.e. not considering any user
interaction in the process, should it be direct or not. Such approaches mainly
refer to topics such as viewpoint computation (models and techniques to
estimate the amount of information a viewpoint contains), declarative
approaches (where a description of the expected result is provided and solvers
generate solution sets), and automated path computations (which consists in
reasoning from the information in the scene, possibly enriched by narrative
elements, to generate appropriate shots, paths and edits).
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Viewpoint computation finds many applications in computational geomettry,
visual servoing, active vision and image-based rendering (IBR). In IBR, the
technique can be used to generate multiple impostors for an objectt (while
enforcing minimal set of views, and maximum covering of the object);

Mesh saliency was introduced as a curvature-based metric. The authors
proposed a gradient-descent optimization to compute views that miximise this
saliency.
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Criteria to compute good views are obviously numerous/ Litterature generally
consider:

•silhouette (good metric in perception for familiar objects) 

•mesh saliency (saliency is essential in the preception process --
recognizability) 

•surface area

•importance of preferred views (related to the functionnality of the object) 

•composition constraints
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Generalized approaches would not restrict to only character tracking or user
interaction, but essentially attempt to cover, in computer graphics, the full
range of applications a camera covers in real-life. Generalized approaches are
based on the idea that shots can be expressed in terms of high-level (specific
or general) properties, which in turn are expressed as constraints or
optimization functions over the camera degrees of freedom.

This is a clear move towards more expressiveness, and a more
cinematographic experience in computer graphics, by considering a large set
of properties, by looking at composition and narrative aspects
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A shot is described in terms of properties:

•over the camera (high angle, low angle, travelling, panoramic ...) 

•over the content of the screen (exact and relative locations of objects,
orientations of objects, visibility, size and depths) 

Language is generally adapted from cinematography/television and
photography literature.

Properties are then written in terms of constraints or fitness functions defined
over the set of camera parameters (or path parameters). A range of techniques
exist, from simple enumerate/evaluate, to interval-based constraint techniques,
optimization and constrained-optimization.

The choice of the solving techniques mainly relies on the application its
dedicated to.
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The description can be directly inspired from cinematography and photography
literature, or may correspond to any need specific to the devised application.

Motions:

•arcing represents a rotational motion around a target (or set of targets) 

•travelling is a linear motion (tracking when the camera dof is parallel to the
motion, and dolly when its orthogonal) 

Content of the screen:

•framing is commonly represented by a rectangular shape that bounds the
location of the character/target – other primitives can be used (see CamPlan).

•visibility is not trivial to characterize (partial occlusion eg. through leaves or
fences, or short-term occlusion) 
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Main questions when modelling the problem are:

•which representations (or abstractions) should be chosen for the objects? eg.
what would be the instrinsic orientation of a character: body or face? which
bounding primitives should be used?

•which level of stiffness? When translating properties into constraints, some
degree of variation should be allowed (otherwise problems become rapidly
over-constrained). For the orientation property, for example, is it required to be
exactly on the front axis of the target object, or can any value (in a range, or in
a range with a preferred value) be used? Then are there some overlaps with
other orientation properties (eg ¾ left profile).?
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Need to constrain an object s to a rectangular frame on the screen:

•checking the projection of a single point: projection is a strongly non-linear
relation

•cannot be repeated for every point: issue of the representation of the object

Bounding spheres: not appropriate if no hierarchical representation is provided

Bounding boxes: requires the projection of all 8 vertices (can be simplified by
only considering the extreme vertices)

Exact representations can be used by performing some hardware rendering
and checking pixel overlap with the frame, but difficult to compute the
derivatives of such functions when using optimisation-based packages as
solvers.
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Classification of approaches in the literature

•on the horizontal axis, there is a progression from left to right, between
discrete and continuous methods. Discrete methods consider a (regular or non
regular) sampling of the search space either locally around a configuration, or
globally. Continuous methods consider the full range of real values (as would
do gradient-based optimizers) 

•on the vertical axis, there is a progression from pure constraint-based
methods to pure optimization-based methods. In constraint-based methods,
each property is expressed as a (hard) constraint and a solution should satisfy
all the constraints simultaneously. In optimization-based methods, each
property is expressed as a fitness function. Functions are then individually
aggregated into a function to minimize (maximise) 
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One can further classify the discrete techniques according to their complete or
incomplete nature: are all the camera configurations evaluated or not?

•in complete techniques, the whole search space is sampled for camera
configurations. Not really appropriate for dynamic environments (or
configurations need to be re-evalusated) 

•in incomplete techniques, the space is either locally sampled around a current
configuration (in a way inspired from local search techniques), or refined in
promissing areas

Solving:

•evaluation-based: expensive, misses potential solutions

•constraint-based: some techniques (interval techniques [Moore66]) allow to
(over) evaluate a whole range of solutions, which enables pruning to be
performed

•heuristic-based: classical hill-climbing, branch and bound, etc.. don't
guarantee the optimality, cost can be easily tuned.
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ConstraintCam considers the problem of viewpoint computation for
composition. The authors propose a large set of properties, including occlusion
and rectangular bounding for targets (complex properties to evaluate).
Discretization steps are quite large, but due to the number of dimensions to
explore (7), a very large number of configurations is explored (> 13M).
Improvements proposed later by the authors use a refinement process around
“interesting” regions (ie. where the fitness functions provide better values).
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Displays an example of the ConstraintCam system using a high-level
description (e.g. over the shoulder shot involves 5 to 6 functions). Properties
can be emphasized by adding a degree of preference expressed as a scalar
value (generally normalized).
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Constraint-based techniques rely on the expression of each cinematographic
property as a (hard) constraint, i.e. that is either fully satisfied or not satisfied.

Since the domains of the camera parameters are generally large (with a large
discrete set or a continuous set), the solving processes will compute a set of
solutions satisfying all constraints simultaneously (or satisfying most of the
constraints when over-constrained), instead of a single solution maximizing the
aggregation of fitness functions (as with classical optimization schemes)
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Interval-based techniques employ a specific representation in which domains
of the camera parameters are modelled as an interval of floating-point values.
All computations are therefore performed over these interval values. The
solving process partitions these domains into three categories:

•domains that are fully satisfied (i.e. every floating point value in the domain is
a solution to the set of constraints) 

•domains that not satisfied (i.e. every floating point value in the domain is not a
solution of the whole set of constraints – but could be a solution to a subset of
constraints) 

•domains that are partially satisfied (i.e. the domains possibly contains both
solutions and non-solutions, and must be further bisected).

The process iterates partitions over the domain up to a minimal splitting size.
Recent techniques (using Newton-based interval computations) implement
efficient pruning operators that reduce the practical complexity.

Closely related to kd-trees (the satisfaction is computed for every node) 

89M. Christie & P. Olivier

Siggraph Asia 2009 Courses: Camera Control in Computer Graphics



An example from [CLB09] of an interval-based technique. The description
typically represents an over the shoulder shot in a face to face discussion
between two characters. The interest in computing the whole partitioning of the
space lays in that adjacent cells can be linked together in an (adjacency)
graph, and paths can be planned within the graph. Furthermore the
discretization can be operated over the time dimension, which provides in turn
a spatio-temporal adjacency graph (see [CLB09]).

This sequence of shots illustrates the refinement of properties in the solving
process. The first shot displays collision (ie pruning partitions that collide with
elements in the scene) 
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Second shot displays front wedge for the first character (A is visible from the
front)
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Third shot show all configurations remaining where B is seen from the ¾ rear
viewpoint (no sode is chose according to the line of interest defined by the two
actors).
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Last shot displays all configurations where B does not occlude A in the shot.
Here shots display the computation at time t=0.
Computing the configurations for a discretized set of time intervals over 0 to 5
seconds, leads to the construction of an adjacency graph that evolves in time.
By reasonning over the evolution of this adjaceny graph in time, one can plan
cinematographic shots and edits (eg. Is there a static shot such that all
properties are satisfied over time interval [0..5]? Is there a continuous motion
of the camera such that all properties are satisfied over time interval [0…5]? Is
it possible to perform a continuous travelling for [0..5]?...)
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•Contiguity: by maintaining the contiguity information between the boxes in the
solving process, one can build a graph (each box is a node, two contiguous
boxes build an arc). Some reasoning steps can be performed on the graphs
(identification of bottle-necks, identification of disjoint sub-graphs, depth which
provides an idea of how robust the area is...) 

•Navigation: the graph structure is then well suited for navigation processes,
and some properties can be dynamically recomputed if necessary.

•Expensive process: obviously exponential in the number of camera
parameters. Classically contributions generally split into two: (i) the one of
computing the camera location and (ii) the one of computing the camera
orientation.
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Shots are expressed as a set of functions to optimize (classicaly a linear
combination of individual fulfilments), and compared to constraint-based
approaches will compute a single solution to the problem. The first contribution
to the domain was proposed by S. Drucker, who solved cinematographic
properties by using Sequential Quadratic Programming (function is locally
approximated by a second degree equation). SQP techniques typically suffer
from local minimas and are highly dependent on the starting configuration.
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Literature in the domain of virtual camera control displays quite a large range
of solving techniques. In their simplest expression, contributions rely on ad-hoc
solving techniques (eg. the local search paradigm simply considers the
iterative exploration of the neighborhood of a current configuration by
repeating local moves towards the best neighbour, with some multiple forms of
escape strategies in case of a supposed local minima). Stochastic techniques
techniques (eg. genetic algorithms, simulated annealing) are less prone to
local minima and less dependent of initial configurations, but in general remain
computationaly expensive.
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Assa etal. rely on a number of descriptors employed in viewpoint computation
(silhouette, frame entropy, …). For the silhouette, the authors propose to study
the pose joint locations as a point cloud, and extract the plane with the largest
projection (using a Principal Component Analysis). Other properties they
consider are: movement direction of the actor, facing the character, widest
aspect and visibility of the limbs (computed by hardware renderings). Saliency
of motions is computed by comparing a low dimensional curve representation
of relative joint location and speed, with a smooth average curve. Computation
is offline.

Paths are built by localy exploring a neighborhood around the current
configuration, following the best viewpoint evaluation. At each step, the relative
quality of the viewpoint is computed ration of the local solution and the best
global solution). This metric is used to split the path as soon as the ration
reaches a given threshold (70%).
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Optimization techniques offer a valuable framework for camera control:
properties can be expressed in mutliple ways, preferences can be added and
there is a large range of solving procedures. However the complexity of 3D
scenes inevitably requires to use abstractions of the underlying geometry that
lead to approximations in the results (either over or under). Improving the
quality of abstraction of the objects is a difficult task, which generally leads to
significant computational costs. Relying on hardware rendering techniques to
estimate the fulfilment of properties is a good qualitative move. However a
number of solving techniques require the expression of properties as algebraic
relations with smooth behaviour or ability to analytically compute the derivative
– which is not compatible with rendered-based estimation.

Contributions have therefore been exploring the possibilities given by
interleaving and hybridizing different solving techniques.
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Hybrid techniques cover a large range of approaches on both axes. Most
approaches mix geometric operators (to reduce the size of the search space)
with numeric solvers (to concentate on small search space). In that, hybrid
techniques are constrained-optimization approaches (geometric operators are
constraints, and properties to be fulfilled are expressed as fitness functions).
Furthermore hybrid techniques are well suited to hardware rendering-based
estimations.
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•Occlusion (see section on visibility): the use of bounding volumes (such as
spheres in [CN05]) provide a very rough over-estimation of visibility at a
reduced cost (only a scalar product). Though hierarchical models can provide
better estimations, the cost in solving increases severly.
•Framing: detection of overlaps between the projected geometry of a target (or
its abstraction) and screen frames remains complex when looking for precise
evaluations
•Relative location: needs to study the layout produced by the projection of both
targets (or their abstractions). This leads to the same quality of estimation vs.
cost debate.

Hybridizations we review here use:
•geometric operators/partitions to reduce the size of the search space (and
hence the complexity of the solving process)
•hardware rendering to improve the quality/cost ratio
•mix both (eg. Burelli etal. [BGER08])
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In [Pic02] and [CN05], authors separate properties into those than can be
expressed in terms of geometric volumes, and those that can be expressed in
terms of fitness functions. For example, viewing the front of a character can be
expressed by selecting a pyramid volume of camera locations (from -45 to +45
degrees around the characters front vector).

All volumes are then intersected and the search process is performed inside
the remaing volume ([Pic02] use quad-trees, [CN05,BGER05] use implicit
volumes). Contradictory properties can be easily detected (empty intersection),
which is not the case with optimization techniques.

More precise properties such as exact screen locations for the targets, on-
screen distances, percentage of overlap are easily handled by fitness
functions. Other hybridizations are possible, as in [BGER08] which employ
geometric operators, and ray-casting for evaluating occlusion.
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In [CN05], authors develop the notion of semantic volumes (an extension of
visual aspects). In visual aspects, all the viewpoints of a single polyhedron that
share similar topological characteristics in the projected image are
enumerated, and a change of appearance of the projected polyhedron when
changing the viewpoint allows to partition the viewpoint space. Furthermore
these regions can be connected through adjacency to build an aspect graph.
The authors extent this notion to encompass cinematographic properties.
Thus viewpoints with similar cinematographic properties are gathered.

In the numeric computation of solutions, only one viewpoint per volume is
computed. In the picture, each volume leads to a significantly distinct layout of
elements on the screen.
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In summary, a range of solving techniques is available. Solvers differ as to how
they manage over-constrained and under-constrained problem formulation,
whether they perform a complete or heuristic-based exploration, how
extensible they are, and their possibility to hybridize.

The table displays the properties of main solving techniques in terms of
expressiveness (nature and range of properties that can be expressed),
interactivity (mainly a factor of real-time computation), extensibility (how easy
to integrate new properties in the solving process) and computational cost.
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All camera control frameworks fundamentally rely on being able to compute
and reason about the visibility of target objects in dynamic environments. Yet
in contrast to shadow computation and occlusion culling, the issue of visibility
in camera control has received relatively little attention. Current real-time
approaches to the computation of occlusion-free views of target objects (e.g. in
computer games) rely almost exclusively on simple ray casting techniques,
although approaches tend to now rely on hardware rendering techniques
based on shadow volume and shadow penumbra computation.
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Visibility is a central challenge in camera control. Games, for example, require
to maintain the visibility of the player and of secondary elements
simultaneously (opponents, exits, items,...). Furthermore, games have been
operating an important move these last years to a more cinematic experience.
In scientific visualization, data may be hidden in a complex geometry setups
that evolve over time. In navigation tasks, maintaining the visibility of multiple
known landmarks avoids the users from getting lost or loosing time in re-
orientation.

However visibility is application dependent and has multiple interpretations,
which means there is no generic solution to the problem. One can look at the
overview proposed by [Elmquist08] who details techniques to handle occlusion
in data and object visualization (however not on how to compute viewpoints
that maintain visibility, but on how to alter the geometry or scene graph). This
section only considers means to evaluate occlusion and to escape from
occlusion.
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The complexity of handling visibility in camera control has many sources:
•first of all, the real-time nature of most applications require efficient evaluation
AND anticipation of occlusion
•second, maintaining visibility in dynamic environements is computationaly
expensive (as it is for occlusion culling in the field of visibility techniques for
efficient rendering)
•third, the targets are generally complex-shaped objects, for which the
estimation of the full visibility is an expensive process.
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In this course, we will consider both:
•the problem of visibility determination (ie estimating how much a target is
occluded)
•the problem of occlusion-free viewpoints determination (ie computing
viewpoints from which target objects are visible)

For both problems, local and global techniques can be employed in similar
ways:
•local techniques rely on a restricted knowledge of the environment (but can
be easily updated)
•global techniques rely on a full knowledge of the visibility in the environment
(that is expensive to update)
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In ray casting approaches the candidate position for the camera is evaluated
by casting a ray in the direction of the target object. An incremental
improvement on simple ray casting approaches can be achieved by casting
from an array of candidate camera locations (at a linear increase in cost), and,
where the visibility of multiple target objects is required, by repeating the
process for each target object. Deciding how to move the camera based on
such collections of single point estimates of visibility has a number of
limitations, for example, it is not possible to maintain partial visibility of a target
object as it moves behind a sparse occluder (such as a set of railings).
Furthermore, using a single point to approximate the geometrical complexity of
a target object fails to sufficiently characterize its visibility.
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To estimate the visibility of a target objects, rays are casted from the current
camera to the surface of the target (or to its approximated surface). For
example, a number of approaches to automated camera control compute the
visibility over the vertices of target bounding box [BGL98, LC08, BGER08].

Since ray-casting undersamples the full extend of the target geometry, visibility
is either over-estimated or underestimated. Increasing both the numbers of
rays and the precision of the approximated surface improve the results. One
appropriate technique consists in pre-computing a set of points on the surface
of the target object, dependent of the orientation and the size of the target to
improve the quality of results wrt. distance with the targets.

110M. Christie & P. Olivier

Siggraph Asia 2009 Courses: Camera Control in Computer Graphics



Moving from visibility estimation to the computation of occlusion-free
viewpoints with ray-casting techniques.

The obvious solution consists in repeating the ray-casting process for multiple
candidate viewpoints. To ensure enough diversity in the search process, a
large range of viewpoints is necessary (increasing the cost). Other techniques
consider casting rays from the surface of the targets to a range of viewpoints;
cost is similar to the previous version, yet by appropriately choosing the
viewpoints, one can reduce the cost (once a ray hits an occluder, all the
configurations behind the hit are occluded, and all in front are visible.
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Using bounding volumes for visibility detection is a rough and conservative -
yet rapid - way of estimating occlusion (i.e. can be used before more
expensive techniques such as hardware rendering). Many libraries provide
efficient means of detecting collision with primitives, and in most cases, the
process only requires a boolean result from the test (ie. not the volume, depth
or point of intersection). Courty & Marchand [CM01, MC02] avoid occlusion in
a target tracking problem by computing an approximate bounding volume that
encompasses both the camera and the target. Occluders (i.e. not the camera
or the target objects) are prevented from entering the volume corresponding to
target motion or camera motion. However, the approximate nature of the
bounding volumes restricts both expressiveness (e.g. quantify partial
occlusion) and practical application (e.g. over-estimation for complex shapes).

A study the evolution of the depth/volume of intersection is possible to get an
idea of how occlusion is evolving. This can be used in a preventive way by
proposing large volumes around the camera. However, these approximations
are rough and the cost of computing the intersected volume may overshadow
the lightweight advantages of the technique.
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Degree of visibility of the target is determined by the ratio between the number
of visible pixels of the target and the total number of pixels of the target.

Increasing the resolution of the rendered buffers obviously improves the
precision in the visibility estimation (and rapidly converges to a good
estimation) 

Occluders and target objects can have specific geometries adapted to the
rendering

•low resolution geometries, partial models (eg remove arms and legs, keep
hands and feet)

• removal of sparse occluders, or alpha blended textures (e.g. fine fences,
leaves etc...) 

Important regions on the surface of the targets can be either manually or
automatically (silhouette, saliency) computed and rendered on the surface of
the target. Visibility can then be weighted by this importance map.
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Using Hardware occlusion queries often lead to CPU/GPU stalls (nothing is
done while waiting for the query results). An apropriate ordering of the
operations must be performed while waiting for the GPU occlusion queries.
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Only a small number of real-time approaches for occlusion-aware camera
control have been proposed. Crucially, existing techniques (e.g [HO00]) cannot
be easily extended to capture the full spatial extent of target objects (i.e. they
model target objects as points). The computation of occlusion-free viewpoints
is closely related to the well known problem of visibility determination
[COCSD00, Dur00] which has a bearing on a range of sub-fields in computer
graphics, from hidden surface removal and occlusion culling, to global
illumination and image-based modeling and rendering.
Here we move from visibility estimation to the computation of occlusion-free
viewpoints with hardware rendering techniques. The principle is close to the
one of ray-casting: renderings are performed from the target object to the area
where visibility should be checked, and most similar to the principles in
shadow volume computation (studying the depth buffer to estimate whether
the geometry is shadowed or not).
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A consistent region can be computed by projecting the bounding boxes of
nearby potentially occluding geometry onto a discretized sphere or box
surrounding the target object, converting these projections into global
coordinates, and finally negating these to yield occlusion free viewpoints
[BL99, PBG92, DZ95].
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A clear parallel can be drawn between the problem of real-time soft shadow
computation and real-time visibility computation of target objects. Target
objects can be treated as light sources for which we need to compute the
volumes outside of the shadow and penumbra (this is an inverse volume
carving problem) in which to place a camera. One technique for real-time
shadow computation relies on silhouette detection (e.g. penumbra wedges
[AAM03]), that use the exact silhouette of objects to compute shadow
volumes. However, the complexity of silhouette detection increases with the
complexity the objects casting shadows and such approaches are also not
readily applicable to rasterizable entities that use alpha-textures (which are
increasingly used real-time 3D graphics). Another class of techniques that is
used in camera control [CON08] relies on frame-buffer approaches that
construct a depth map rendered from the location of light sources using
graphics hardware. This shadow map is then sampled in relation to the world
geometry and a simple depth comparison can be used the determine the
status of a point in space (whether it is hidden by an occluder or not).
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In a given region, visibility for multiple targets (or multiple points on the target
surface) is computed by performing one rendering per target. Depth
information is composed in a way similar to penumbra maps (see next slide):
the area is sampled and each sample is expressed in the local basis of each
rendering in order to access the appropriate depth value in the shadow map. A
specific way of composing depth maps is proposed in [CON08], where
asymmetric frustums are computed for rendering. This technique avoids the
sampling of the area by using a trilinear basis to access visibility information.
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Composing visibility information for a sample and two renderings: this study
details the different cases. A and B are the origins of both rendered frustums,
and I is the sample for which visibility is computed. Dark triangles represent
occluders. In the top left frame, I is not occluded from B viewpoint, neither is it
from A (the depth of the occluder being greater than the depth of the sample in
A’s basis).

This composition maintains the knowledge of which samples are: fully
occluded (from both targets), only occluded by A, only occluded by B, and fully
visible. The quantitative storage enables to improve the reasoning when
selecting the next location in the sample are.
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Hardware-based approaches to real-time visibility for camera control [HO00]
evaluate the degree and extent of occlusion by rendering a scene in stencil
buffers using a color for each object. Such techniques have a number of
attractive properties including an independence from the internal
representation of the objects, and, by avoiding bounding volumes and other
geometric approximations of the object, a more accurate calculation of
occlusion. Approaches based on rendering also allow the use of low resolution
buffers where appropriate.

[HL01] propose to render Potential Visibility Volumes from the target viewpoint.
The PVS are built as concentric shapes of decreasing intensity (using a stencil
buffer to keep only the brighter ones (see next slide).
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Left picture displays the rendered image. The brighter the colors, the better the
configuration. The authors use a reverse-projection to compute the best point
in the z-buffer. Collusion with occluders is not handled since the z-buffer is
written over by the occluders (see the right frame).
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For multiple targets, [HL01] propose to use a projective shadow casting
algorithm for each viewpoint. The PV regions are then rendered from a new
viewpoint, by projecting the shadows onto the surface to determine the
visibility.
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The methods we reviewed provide efficient and CPU-adaptive approaches to
locally establish visibility or compute occlusion-free views. However their
intrinsic local nature prevent them from performing transition planning (moving
from one viewpoint to another while maximizing visibility), and may fail in some
situations (no local visibility). Furthermore, when cuts between viewpoints
must be computed (eg. reverse shots), many local regions need to be sampled
(with no guarantee of finding an appropriate view).
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Visibility methods aim to calculate either the regions of a space which can be
seen from a point (from-point visibility computation), or those that can be seem
from a region (from-region visibility computation). In simple terms, visibility
determination uses visual events - the boundary configurations for which
the visibility changes - to partition space. Such methods can be broadly
categorized according to the space in which the partitioning is performed, that
is, object space, image space, viewpoint space or line-space (for a detailed
presentation see [Dur99]). Visibility methods in dynamic environments have
mostly addressed the problem of updating these visibility representations for
moving objects [SG99] and modeling moving occludees (e.g. motion volumes
[DDTP00]).
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A large range of space partition techniques is present in the literature. In this
course we’ll present the cell-and portal techniques, and the visibility roadmaps.
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C&P visibility is restricted to architectural environments, though abstract 2D ½
representations can be used to handle more complex scenes [Lam09]. C&P
techniques have been initially proposed to improve occlusion culling in
complex urban scenes (ie removing parts of the geometry that are hidden).
The scene is decomposed into cells (or convex cells to ensure full visibility
inside them – a constrained Delaunay triangulation helps to compute such a
decomposition), and cells are connected by portals (which edges are the
support for visibility). Inter-cell visibility propagation is then performed by
constructing stabbing lines (lines that separate the visibility in space). Visible
cells are connected together in an visible adjacency graph.
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Inter-cell visibility propagation is then performed by constructing stabbing lines
(lines that separate the visibility in space). Visible cells are connected together
in an visible adjacency graph.
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Examples of from-point visibility propagation (top view), and from-region
visibility propagation (bottom view). The C&P decomposition helps to
propagate the visible ares in cells.
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Mandatory process to couple local visibility (for dynamic occluders) with global
visibility.
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From region visibility can be computed by using penumbra maps. The surface
of the target object (B) is approximated by a set of patches considered as light
sources. The negation of the cumulated penumbra areas provides a
characterization of the target visibility.
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The surface of the target object is decomposed or sampled with rectangular
patches. Classic shadow map techniques are used in a first process. Then for
each occluded depth pixel, we build the penumbra map by considering the
patch as the light source. The depth map is updated with the penumbra
information. Computations are srongly simplified by considering that the patch,
depth pixel and depth map are parallel planes.
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Another important problem for real-time camera control, and one that is related
to visibility, is the maintenance of shot coherency (i.e. avoiding abrupt and
visually incongruous changes in viewpoint). If a camera only reacts to features
that are `in shot', then the sudden onset of occlusion that occurs in dynamic
and complex environments will result in equivalently abrupt responses by the
camera. To mitigate this we need to incorporate mechanisms that stabilize the
camera movements according to the spatial and temporal evolution of visibility.
By monitoring the accumulation of the visibility information over the successive
frames we can explicitly control the degree to which the camera is sensitive to
partial and short-lived occlusions
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An adequate data structure can be easily designed to store a sliding window of
shadow maps over time. The cost of accessing and cumulating visibility states
is linear in the size of the sliding window.
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This final session discusses the problems related to the actual deployment of
these techniques and directions for future research, including (1) augmenting
the expressiveness by considering cognitively well-founded perceptual and
aesthetic properties; and (2) the development of editing constraints (for
discontinuous shot camera transitions).
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The management of complex 3D scenes almost inevitably requires us to use
abstractions of the underlying geometry. To this end, existing practice typically
utilizes simple primitives: points or bounding volumes such as spheres. Some
proposals do consider precise geometry for occlusion purposes [HHS01,
Pic02], but at a significant computational cost. Improving the quality of
abstraction of the objects is a difficult but necessary enterprise. The principal
constraints on the abstraction to be used is the solving process itself and the
computational resources available. In existing work abstractions are either
based on geometric simplifications to reduce the computational cost (from
points to single bounding and hierarchical regions), or on semantic
abstractions (object, character) to aid description.
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Visibility is actually on of the main issues in camera control, and has been
quite neglected. With the advent of efficient dedicated graphical languages,
such issues are currently re-explored.
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Visibility is not only difficult from a technical point of view, it also is related to
more fundamental aspects in perception that are critical to evaluate
(recognizability, task-dependent, duration and extent of the occlusion).
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Another major issue in virtual camera control. Though not all approaches rely
on planning techniques (through-the-lens, reactive approaches), it remains
central in navigation and exploration-based applications, either interactive or
automated, and in games context.
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Expressiveness represents another major issue and a motivating research
direction in virtual camera control. If we consider the 4 levels of information
that an image or a sequence of images conveys (informative, perceptive,
aesthetic and cognitive, and emotional), only the first level has been studied in
detail (informative) and there are some significant contributions in the second
(perceptive). Third and forth are pretty much in their infancy.
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A broad range of techniques have been proposed in the literature, that share a
number of key issues. A proposal we believe in, is to create a benchmarking
environment containing:
-a number of 3D example scenes
-for each scene, the description of a number of tasks to perform, with a
uniform language description
-means and proposal of criteria to evaluate the quality of camera systems.
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A number of approaches characterize object recognizability and provide
techniques to compute views that maximize the visual saliency for static
scenes [HHO05]. Cognitive levels have been addressed both by the robotics
and the computer graphics communities whereby a minimal set of viewpoints
(canonical views) for recognizing an object and/or detecting its features is
computed. The principal metrics are view likelihood, view stability [WW97], and
view goodness [BS05a] which have been computed using entropy measures
[VFSH01]. Extensions to automated navigation have also been explored for
historical data visualization [SS02] and scene understanding [SP05], but
remain the exception.
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Whilst the aesthetic properties are likely to be founded on an adequate
cognitive model, work on exploiting editing rules to effectively engage the user
are
still very much in their infancy. We see this as a key area for interdisciplinary
research by both computer scientists and cognitive psychologists.
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Abstract
Many computer games treat the user in the "1st person" and bind the camera to his or her view. More sophisti-

cation in a game can be achieved by enabling the camera to leave the users’ viewpoint. This, however, requires
new methods for automatic, dynamic camera control. In this paper we present methods and tools for such camera
control. We emphasize guiding camera control byconstraints; however, optimal constraint satisfaction tends to
lead to the camera jumping around too much. Thus, we pay particular attention to a trade-off between constraint
satisfaction and frame coherence. We present a new algorithm for dynamic consideration of the visibility of objects
which are deemed to be important in a given game context.

1. Introduction

The current use of camera techniques in computer games
is comparable to the situation in the early days of motion
pictures. Back then, actors and directors were used to the
theater stage and the viewer had only one perspective for
the whole performance. There was no moving camera, no
cuts, and only one shot size. Over the following decades,
cinematography developed and people became accustomed
to its language. Today, camera techniques form an important
part of the story-telling process. The right use of a camera
can enhance a viewer’s experience as much as poor camera
handling can destroy it.

In the past, games provided a first-person view or allowed
the gamer to choose from one of several predefined cam-
era positions including one or more over-the-shoulder views.
The use of first-person views places the gamer inside his
player character and has the fortunate side effect of freeing
the game developer from any serious camera work. This is a
valid approach for the type of first-person shooters that have
dominated the real-time 3D game sector, but there is now a
need for a more sophisticated camera handling. Indeed, the
camera settings can reveal information to the user in a subtle
way. Third person views, for instance, are often associated
with higher player-character identification, so that the player
takes on the role of his or her hero (or in todays market, more
likely the heroine).

Games proudly present their optimised graphics engine,
their superior artificial intelligence, even their sophisticated
story engine. In this paper, we propose methods to create a
further step in the evolution of interactive entertainment –
the games camera engine. One of the main conceptual chal-
lenges is to obtain a balance between optimality of camera
settings on the one hand, and smooth transitions with appro-
priate cuts on the other (i.e. frame coherence). We begin by
focusing on previous work (Section2) in this area, then out-
line the requirements for a camera engine, so that we present
our system in Section4. Finally, we apply the camera en-
gine to some scenerios for evaluation, before we conclude in
Section6.

2. Previous Work

Much work has been done on enabling users to directly
manipulate the camera14, 20, 25, 24 or on providing camera
assistants22, 12, 16. However, relatively little has been done in
immersing the user in an environment by controlling an ob-
ject or character, whereby the camera process should be in-
visible to the user. Nevertheless, allowing communication of
important visual goals such as navigational information, or
notable features in the environment, should be enabled so
that the player is not left running into the unknown.

c© The Eurographics Association and Blackwell Publishers 2001. Published by Blackwell
Publishers, 108 Cowley Road, Oxford OX4 1JF, UK and 350 Main Street, Malden, MA
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2.1. Background

We agree with the game developer Barwood3, who notes that

"[computer games] are as different from [movies]
as movies are different from theater"

This means that camera techniques used in future games
will have to develop and employ languages and rules on top
of cinematographic techniques. Differences arise from the
fact that computer games are highly interactive (unlike film
or theater). This makes it impossible for any director module
to stage and rehearse actions beforehand. Therefore, even if
computer games’ camera modules would possess the cine-
matic knowledge of directors, they could not apply it since
these techniques depend to a great part on trial and error.
Also, when shooting a real movie, directors are at liberty to
reposition actors and change the scene, even the script. In
contrast, a camera module is typically given the scene as it
is. If, due to geometric constraints, a good camera position
can not be found in the scene as it evolved up to that mo-
ment, a less-than-satisfactory camera position must be used.
Thus, converting cinematographic techniques into idioms,
such as He et al.15, will provide opportunities for predefined
film scenerios, but lack camera setups to convey visual goals
that aid interactivity for the player.

The use of the camera in a movie is highly dependent on
the current situation. To approach the quality of film’s cam-
era techniques in computer games, games can classify each
possible situation during the game into a (hopefully) small
number of variants. Each of these can be associated with a
number of techniques describing how to shoot that scene,
where to place virtual cameras, how to follow an actor and
when to cut (switch between virtual cameras). For instance,
in a dialog situation, the camera can focus on the participants
alternately as they speak, starting with an establishing shot
framing both speakers. When exploring unknown territory,
the camera – which normally follows the player character –
can provide hints for the gamer by looking elsewhere if there
are important clues to be found (or missed). In interactive
applications, all shots are presented to the viewer immedi-
ately without any editing and montage of the raw footage,
therefore a director engine should also know what is likely
to happen next so that it can plan shots and their transitions
(panning or cuts) in advance.

2.2. Computer Games

Game companies such as Lucasarts have a great series of ad-
venture games in 3D, but have rigid fixed camera positions,
so that if not everything is going to plan or not all characters
are in place, it will not be shot right. Therefore they must
limit their interactions based on pre-defined scenarios.

Most real-time games solve camera positions procedu-
rally, using specialised camera routines adapted to the design
of each level. This makes for an inflexible camera engine,

and often leads to situations where the camera is not showing
the best view for the user. In Tomb Raider, for example, the
camera can produce awkward views in closed spaces when
Lara (the heroine) is backed up against a wall, because the
camera computes without explicit consideration for visual
properties in the view.

2.3. Constraint Satisfaction

Few interactive systems propose methods that effectively
avoid occlusion. This is surprising considering the im-
portance of maintaining an objects’ visibility in shot.
Christianson6 check for occlusion given a camera shot by
testing against overlapping bounding spheres and increment-
ing an occlusion counter, but do not adjust camera state to ac-
comodate visibility. Work done by Halper and Olivier13 use
image precision calculations to assess visibility, but employ
offline genetic algorithms for optimal camera state genera-
tion. Tomlinson23 test against occlusion in their interactive
environment by shooting a ray to the object in question, and
adjust the camera vertically only, although this method is
mostly suited for use in sparse outdoor environments.

Philips22 developed an algorithm based on the hemicube7

to select viewpoints and viewangles to ensure that a manip-
ulated object is not obstructed by other objects. They use
a cube centered around the origin of the object being ma-
nipulated, and orient it towards the camera position, whilst
projecting the geometric environment onto each cube face
to achieve a visibility map. If the camera is obstructed, they
look in the neighborhood of the direction of the camera for
an empty area in the visibility map, which suggests a lo-
cation of the camera from which the object will be visible.
Drucker8 processes the visibility map to create a potential
map, which is followed from the initial location down to
the nearest location in the visible region. Philips22 acknowl-
edges that their algorithm will often fail in an enclosed en-
vironment without the use of depth information in the visi-
bility map. Bares1 accomodate this fact when their optimal
vantage angle is occluded by decreasing the distance of the
camera to the object until it is placed in front of the nearest
obstacle. However, none of these techniques can compute
a position such as P shown in Figure1, and can only re-
solve visibility for a single point. Our algorithm described
in section4.4 is able to find points such as P, and resolves
occlusion constraints for an arbitrary number of points.

Drucker et al.9, 10, 11 set up an optimal camera position
for individual shots subject to constraints. The camera pa-
rameters are automatically tuned for a given shot based on
a general-purpose continuous optimisation paradigm. These
methods proved effective and allowed the design of cam-
era modules. However, the camera modules, such as used in
the CINEMA system, experience problems combining and
constraining multiple procedures, requiring specifically tai-
lored procedures to be setup. Bares1 are limited to using
vantage angle, viewing distance, and occlusion avoidance.

c© The Eurographics Association and Blackwell Publishers 2001.
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target

P

Figure 1: Figure showing problems when limited depth in-
formation is available in the visibility map. Current visibil-
ity algorithms do not process depth information across other
angles of visibility, such that a viable point P can be returned

Neither provide predictive analysis for their interactive en-
vironments, or offer the ability to impose constraints based
on existing camera situation and movement. This in turn
means that they cannot achieve a high level of camera frame-
coherence.

2.4. Cinematography Concepts

Christianson6 claim that shots are guaranteed to result in a
common shot form using their Virtual Cinematographer, al-
beit with a greatly reduced set of possible camera specifica-
tions.

Systems such as CATHI5 or by Karp and Feiner17, 18 en-
code idioms in the form of film grammars, using a top-down
approach in generating a sequence of shots. They are able to
produce camera paths that achieve certain visual goals, but
use timing information in the animation and therefore cannot
be directly applied to reactive environments like computer
games.

Tomlinson23 propose a behavior-based autonomous cin-
ematography system by encoding the camera as a creature
with motivational desires, focusing on camera movement
styles and lighting in order to augment emotional content.
This is a step in the right direction for autonomous cam-
era agents in interactive worlds, as their camera creature at-
tempts to capture sequences that are of interest to the viewer.
However, their constraint solver is computed procedurally
based upon requirements for their system, losing the flexi-
bility desired for developer-defined specifications.

3. Camera Engine Requirements

We propose that a camera module should be a part of the
game engine pipeline as shown in Figure2. Each module

generates its own output down the pipeline from the given in-
puts. The story engine drives the motivations for the actions
in the game, and is the most flexible and creative part of the
project. The action module creates events – interactions from
the player with the environment and story-related actions.
On the bottom extreme of the pipeline, we find the renderer.
This engine must produce consistent crisply defined results.
The lighting module is a step higher, but is dependent on ad-
justing settings to emphasize visual goals depending on the
camera state. The camera module finds itself in the middle
of the pipeline, a balance between flexibility and hard con-
straints – it must try to convey visual goals that dramatize the
action, but is still confined to properties of the environment.

Action Module


Camera Module


script


actions


camera

parameters


controls game logic and non-player

characters, knows the story


handles user interaction, knows

current situation


compute camera location, make

tradeoffs as needed, decide to

move camera or cut


Lighting Module

light settings


set lights according to focus to

emphasize mood


Render Module

image


render frames according to scene,

characters, light and camera


Story Module


Figure 2: The game pipeline

On the basis of our analysis of previous work, we can re-
duce the camera engine requirements down to three basic
requirements:

flexibity: must use parameterised techniques and versitility
in defining constraint specifications in order to adapt to the
output of events from the action module.

information: the more the camera knows about what is go-
ing on in the world, the better. We need event calls, informa-
tion from actors, player motivations, and visual goals.

satisfaction: a best-fit solution will not always be present.
Therefore, we need partial satisfaction solutions, and incor-
porate adaptive degradation, so that we can at least convey
the most important visual cues at any given time.

3.1. Specification

A director does not plan shots by their low-level parame-
ters such as camera position and direction, but by their de-
sired visual properties, as first suggested by Blinn4 and ap-
plied by Drucker10. These can be put as constraints on the

c© The Eurographics Association and Blackwell Publishers 2001.



Halper, Helbing, Strothotte / A Camera Engine for Computer Games

camera but need not immediately lead to concrete parame-
ters (which can be influenced by emotion templates). An au-
tomated camera control system must therefore find camera
configurations that satisfy the constraints reasonably well.
The first task therefore is finding these constraints.

Experience with previous work21 proved enough flexibil-
ity and expressive power is possible by constraint specifica-
tion and made a first attempt at defining a list of shot prop-
erties to ensure a complete set of workable properties were
available. This set was refined by Halper13, and Bares2, pro-
ducing similar results. The class of declarative constraints
are refined here – we remove constraints that are either re-
dundant or not useful in the context of computer games. We
also find way to integrate these constraints into a constraint-
solver pipeline detailed in section4.3, that effectively inte-
grates and satisfies specified combinations of constraints for
arbitrary numbers of objects.

Level At The camera should be offset at a certain height rel-
ative to the object. This constraint often applies to portraits
where the camera is facing the actor, or when we want to
follow a target.

Angle to line-of-interest The angle from which to look at
the target, specified relative to the line-of-interest, that is
usually the line of interaction between characters or directly
defined. This constraint is mutually exclusive with the next
one.

Facing Each object has a vector that defines the ‘front’ of
the object. Since this direction is tied to the target, the cam-
era moves when the target turns. From this we can also spec-
ify informative 3/4 viewing angles to objects, or create over-
the-shoulder shots by setting the desired viewing angle to
look from behind the object.

Size This is actually used to control the camera’s distance
to the target. Since finding the right distance depends on the
targets shape and size as well as viewing angle and focal
distance, the camera distance is better specified in terms of
the resulting size of the targets projection on screen. When
maintaining constraints over time, blind adherance to a size
constraint dependent on camera or object orientation can re-
sult in oscillating camera movements as the size measures
vary (e.g. this would occur if we measure size as the relative
number of filled pixels in the view for an object). Therefore,
direction invariant metrics such as the bounding sphere ra-
dius are a better choice than constraining against more pre-
cise measures.

Height angle Instructs the camera to watch the target at a
specified angle from above or below.

View at angle (X and Y) Position the camera so that the
line from target to camera has a specified angle to the view-
ing direction. If set at 0.0, this puts the target in the center

of the screen. X angles other than 0.0 move the projection
of the target to the left or right side of the screen; the Y an-
gle is used to push the target toward the top or the bottom.
For the target to remain on screen, these angles should be set
smaller than the camera’s field of view in X or Y. We define
position of objects as angles, so that it is possible to specify
placements of objects surrounding the camera.

Visibility The target is to remain visible to the viewer, such
that unwanted obstructions from scene geometry between
the camera and target are avoided.

The constraints and specifications of this chapter have
been designed so that they can sufficiently define a cam-
era position and viewing direction. Some combinations of
constraints will be impossible to satisfy, especially when
constraints are specified across multiple objects at the same
time. Therefore, if shooting more than one target, the sets of
constraints must be carefully chosen to guarantee a solution.
However, the constraint-solver may still try to find a partial
best-fit for all constraints, as outlined in section4.3.

4. Camera System

We are now in a position to design a system which incorpo-
rates the concepts introduced in the last chapter. The system
diagram is shown in Figure3, and the various components
that comprise the system are described below.

4.1. Trade-Offs Between Constraint Satisfaction and
Frame Coherence

Note that constraints are based on targeted objects and have
to be re-evaluated as they move. In addition, events gen-
erated by the story and action modules can change each
frame, producing different visual goals and constraint spec-
ifications for each situation. A purely reactive application
of constraints, such as Bares1, will give rise to "jumpiness"
as the camera constantly jumps to global best-fit solution
spaces, in particular when avoiding viewing obstructions.
To address jumpiness we have to maintain frame-coherence.
Since frame-coherence makes for smooth camera motion, it
must be given priority over strict constraint adherence. We
address this problem by using several factors: section4.3
constructs a constraint-solver pipeline that computes new
positions from existing camera state, Section4.3.1adds re-
laxation parameters to the constraints, whereas section4.4
details the occlusion avoidance algorithm. Finally, Section
4.5uses lookahead algorithms to adjust the camera to future
situations.

4.2. Director

The director takes input from the action list generated from
the previous stage in the game pipeline. The Predictive Cam-
era Planner requests settings for a certain timet. Based on
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Action Module
 future state


Director


events


parameters for constraints


Emotion Template


tweak constraints:

adjust height angle


adjust size
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Figure 3: The overall design of our camera system

input from the event list, the director selects templates us-
ing the Template Selector, and prepares the constraints for
the Constraint Solver. The director selects templates avail-
able from the shot library, using a number of transition rules
so that successive shotsfit together.

Emotion Templates encode various factors that may influ-
ence the results of camera shots. For instance, shot specifica-
tions can show a certain style of shot, whereas dynamic mod-
ifications to those specifications can produce various moods.
We can influence the parameterisations of the shot proper-
ties defining a shot such that they accentuate a certain effect.
For instance, we may add a height angle to the camera, and
produce a "moody" effect. The amount of "moodiness" can
influence the scale of the alteration to the height angle.

4.3. Constraint Solver

To achieve frame-coherence we compute new solutions for
camera state based on existing camera state. Thus, we plan
the position of the camera for the next subsequent frame.
Since not all constraints can be fully satisfied for each
change in the scene, we get approximate results by first solv-
ing for certain constraints, and then modifying the camera

state to accomodate the other specified constraints. The end
result is one that best approximates the desired output, and
allows a variety of heterogenous constraints to be integrated
and put to practice.

Figure 4 shows how these constraints are applied. Note
that each successive constraint in the constraint-solver
pipeline minimally influences the previous adjustments. Fig-
ure5 shows what happens when constraints of the same type
are used for multiple objects. There we test for cases and
adapt to multiple settings and reach approximate results. Al-
ternatively, we get more precise results for specific visual
goals by using a special constraint combiner, that explicitly
has an algorithm to solve. For instance, we are able to solve
for a size and viewport position constraint on one object,
plus an additional position in viewport constraint on another.

height angle level at

angle to
line of interest

facing

size

visibility solver

lookat

preserve height

preserve angles

nearest fit

preserve position

x

a

y

current

goal

target

a

LoI
z

x

y

a

Figure 4: The order in which constraints are applied. The
current camera state is shown as a triangle, the target as a
square and the goal state as a circle. Each successive con-
straint minimally influences output of previous constraints.
For instance, size conserves both the xy and xz-angles cre-
ated from (height angle/level at) and (facing/angle to line-
of-interest).

4.3.1. Relaxing constraints given tolerance settings

All constraints cannot be instantly satisfied for each change
in the scene, since this produces a rigid camera feel. There-
fore, each constraint has an optimal setting (e.g. size 30%)
which defines a goal for the camera. A tolerance region is
also specified, so that if the camera does not lie in the opti-
mal state, we can compute how far it is from this goal. De-
pending on relaxation parameters, the camera can be placed
a ratiop closer to this optimal. Applied to each frame in the
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Figure 5: Cases of using 2 targets per constraint. Many of
these can be adapted to using 3 or more targets.

sequence, this acts in similar fashion to a local optimization
search, as the camera fluidly moves to a more satisfiable re-
gion. In the case that the camera lies outside the tolerance re-
gion for a constraint, then it must be placed at the borders of
the tolerance region. If too many constraints are outside their
tolerance regions, then the camera may select an additional
set of visual properties for the shot, or use a transitional cut.

4.4. Potential Visibility Regions

The technique we use to compute a new camera position that
provides an unobstructed view of points of interest addresses
the shortcomings of the algorithms outlined in Section2.3.
A flexible and robust method is introduced that allows user-
definable visibility goals to be applied to an arbitrary number
of points.

We allow constraints on the camera in the processing of

occlusion avoidance by using what we call Potential Visibil-
ity Regions (PVR). The developer/designer can impose con-
straints on camera movement for the task of occlusion avoid-
ance by defining a set of geometric constraints using poly-
gons. To denote preference, polygons are shaded a brighter
color than those geometric regions of less preference. This
geometry defines the PVR to which the camera may move in
order to obtain an unobstructed view of the points of interest.

In order to find the best position that satisfies visibility re-
quirements, we write only depth information from the po-
tential occluders to a visibility map. Then, we render the
potential visibility geometry to the buffer in order of most
desirable regions (with the brightest colors) to least desir-
able regions (darker colors), stencilling the regions which
were rendered first. The result is an image buffer, whereby
the brightest colors that first pass the depth test are visible.
The brightest color in the image buffer, therefore, denotes
the most desirable position for the camera to move to.

The flexibility in this algorithm is in design of the PVR.
As an example, Figure6 demonstrates how we would draw
geometry in order to find the closest distance from the cam-
era to an unoccluded view. In addition, we can constrain the
camera such that it may move closer to the object or along
the world-coordinate y-axis only. The choice of the PVR can
be dependent on the tolerance settings of other constraints.
For example, if we have a hard constraint on viewing angles,
we would use the rightmost example shown in Figure6. If
we had a hard constraint on size, we could draw a bound-
ing sphere around the object of interest with radius set to the
distance defined by the size constraint, such that visibility
solutions will only be found on this sphere, maintaining full
satisfaction of the size constraint. These visibility regions
also have the possibility to be defined without modifications
to the core algorithm – they can be input as geometric data
at run-time.

obstacles and concentric

circles of decreasing


intensity seen from above

the desired viewline


target object


solution


constraing camera motion: clipping the spheres yields a

different solution as an unconstrained search


the camera moves only to the side (left) or straight to

the target (right)


Figure 6: Demonstrating sample use of rendering camera
solution regions, selection is based first on highest color,
then on closest angle. Using solution regions other than
spheres allows camera motion to be constrained further.

The introduction of PVR defined by geometry, combined
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with the advent of new shadow casting algorithms and hard-
ware, allows us to extend the visibility search for multiple
points of interest, such that we are able to find a location for
an unobstructed view for each point of interest in real-time.

A projective shadow casting algorithm26 can be rendered
in real-time with todays graphics chips, such as through the
use of nVidia’s register combiners. Alternatively, this may
be done by stencilling shadow regions generated by object
silhouettes19. In either case, we are able to process shadows
upon our PVR from each point of interest, such that our final
result is a cumulative shadow from all our points of interest.
An appropriate view in which to render the potential visi-
bility geometry is computed (we take the point closest to all
points of interest). From this, we render only the potential
visibility geometry that is not shadowed by any occluders,
so that only the locations where each point of interest is vis-
ible comes through to the final image map (see example in
figure7).

The cost of solving visibility using multiple points is lin-
ear wrt. the number of points we solve for. For each point,
we need to render a view (depth-write only) and read from a
depth buffer. This buffer can be reduced to as little as 32x32
pixels to reduce polygon-fill and read-buffer overhead, and
gives approximative results that may produce inaesthetic
shadows for visualisations purposes, but serve well for oc-
clusion information. Note also, that the occluding geometry
need not be as complex as the actual visualised geometry by
the player, allowing the further reduction of rendering cost
by using coarser occluder geometry as a representation of
the actual finer detailed models.

4.5. Predictive Camera Planning

A camera cannot make an intelligent move without at least
considering a future situation.

In order to achieve higher frame-coherence and smoother
camera movement in a reactive environment, the camera is
to progress consistently from frame-to-frame, without dis-
orienting the player with rapid swinging camera movements.
We are able to make some guess as to where objects and the
camera are likely to be a given timet in the future. To do
this, we use approximative calculations for future scene and
object state based on past trajectory and acceleration infor-
mation, and solve the camera for that predicted state. The
current camera trajectory is adapted so that the camera will
be at this predicted position at the given timet, and we com-
pute an estimated camera position for the next frame along
this path. Now we apply the constraint solver on that ex-
pected position, to give the solved camera state for the next
frame (see figure8). Slight deviations to the expected may
occur, but due to the fact that we recompute every frame, the
camera is able to intelligently adjust ahead of time to a large
number of situations.

If the increased cost of this process is too great, we may

current

target

position


predicted

target

positions


predicted

occlusion


occluder


past target

position


predicted solution


updated next

position


maintaining

frame


coherence


Figure 8: Altering the camera path to adapt to a predicted
solved camera state.

alternativelywarp the camera solution region geometry to
accomodate camera motion characteristics, thereby implic-
itly encoding preference for the next best camera position
along the current trajectory. An example of this is seen in
figure9.

Figure 9: The camera solution region is warped according
to motion characteristics of the camera. In this case, selected
regions are favored in the direction of motion, and the algo-
rithm returns the point to the right even though its angle of
change is greater than that of the point to the left.

More effective techniques are also integrated, specific to
the game context. One technique we use is to look along the
viewing direction of the player. If the player can see into the
distance, the camera adjusts to the player orientation to look
in the same general direction. This gives the effect that when
the player is moving and turning frantically in a corridor, the
camera will only swing to give a view of the player heading
when, for instance, the player turns to look through a door
or window.
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Figure 7: Multiple point visibility algorithm. The first two images show the view from two points of interest to the PVR, that
define the shadow maps to be cast on the PVR using depth information. The third image shows an oblique view of
the PVR and its occluder objects, showing that only those portions of the PVR that are unshadowed are rendered.
The rightmost image shows the visibility map view of the PVR, from which we select the preference (brightest)
color, and reverse-project from the z-buffer information to give the closest unoccluded view to which the camera
should move.

5. Implementation and Evaluation

The more successful the camera engine is, the more subtle its
satisfaction of visual goals will be. For this reason, we find
it best to evaluate camera movement over specific scenarios.
Demonstrations and videos of these results can be viewed
on our website:http://wwwisg.cs.uni-magdeburg.de/∼nick/
cameraEngine.

5.1. Exploration

To allow the player to explore her environment, we constrain
the camera to focus on the object using alevelAt, size, vis-
ibility and alookAt constraint. This gives the effect that the
camera follows the player at player height, keeping her in
unobstructed view at all times.

We have tested the exploration template on three different
scenarios: 1) A helicopter flying through a city, 2) A human
figure exploring inside a medieval building, and 3) a bee fly-
ing through a highly cluttered attic. The camera performs
remarkably well in all three cases, avoiding obstructions and
collisions, being capable of adjusting appropriately to many
situations, despite the varied spatial arrangements and com-
plexity of each environment.

5.2. Effects of Predicting Camera and Environment
State

Here we show and evaluate stages in the evolution of our
camera engine. Diagrams of typical results are shown in fig-
ure10.

A naive implementation uses just the hard constraints
without visibility solving. The results are smooth, but col-
lision through objects and obstructed player views are fre-
quent. A better version uses constraints including visibil-
ity computation, but without tolerance settings or predic-
tive measures. We expect that these results are similar to the

no visibility check
 no frame coherence
 no prediction


visibility, frame coherence

inertia, prediction


Figure 10: Common artefacts of reactive camera planning,
only with the introduction of predictive camera planning can
we react to avoid certain situations.

work of Bares and Lester1, causing "jumping" artefacts and
poor frame coherence. Next, we introduce relaxation of con-
straints. The camera movements are smoother, but still have
problems with frame coherence when jumping out of visi-
bility traps. After applying inertia to the camera, so that it
prefers to continue along the path it came from, results are
less jumpy than before, but we get a ping-pong effect from
the change of directions when resolving visibility positions.
Finally, estimation routines adjust the camera movement to
solved predicted camera states. Now the camera is able to
adjust ahead of time to players moving around corners and
through objects, and accomodates to situations where the
player enters a room, providing a view of the door and its
contents before the player is fully inside. In our implementa-
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tion, we achieve surprisingly good visual results from state
predictions based only on past motion data. In a computer
game, the prediction accuracy would depend on what infor-
mation can be supplied by the action module and simple ex-
trapolation of past data would only be a worst-case scenario.

5.3. Using Level-Of-Detail Geometry

The effects of using coarser geometry for visibility con-
straints depend on the game scene and interactive freedom
of the player. Our helicopter animation that flies through a
city allows buildings to be represented as bounding boxes for
use on the PVR, creating a substantial frame-rate increase,
without detriment to the camera movement. However, those
objects which the player may move through (e.g. moving un-
der a table or through a hoop), not only need to share strong
similarities in topology, but must also guarantee that the sim-
plified object’s volume is a superset of the original object,
which prevents the camera from "colliding" with the visu-
alised geometry.

5.4. Fixed Camera Paths

In some cases prior knowledge about a scene is known.
There might be a cut-scene in which the player is known to
travel along a certain path, or a small enclosed room to which
the player is constrained to a limited area. A cut-scene artist
can then plan a fixed camera path to express certain visual
goals or create dramatic views and effects manually. How-
ever, there may be certain aspects of the scene that have been
generated at run-time (such as additional characters present)
and could not have been accounted for in the game design
stage.

In such cases, the camera must adjust for additional possi-
bilities of occlusion, and we may place PVR along the preset
camera path or fixed camera setups. For instance, we adjust
the camera along the camera path whenever occlusion oc-
curs, or cut to a new pre-setup camera position also defined
in the PVR.

6. Concluding Remarks

We have presented what we believe to be the first frame
coherent constraint-based camera engine that allows visual
goals to be applied on interactive 3d computer games com-
prising scenes of arbitrary spatial configurations and com-
plexity.

We have made the following observations:

• Visibility satisfaction should be an integral part of any
camera system and should be coupled closely to the satis-
faction of camera constraints.

• The only way to avoid backing out of a dead-end is to look
ahead in time before you go in. Therefore, developing al-
gorithms that estimate the future state of an environment

are necessary for high quality control of the camera. The
more effective these predictive algorithms, the more sub-
tle the camera motions will be.

• Using a global best-fitness camera state is not necessarily
the best solution for presenting visual goals. Choosing a
partially satisfied camera state that lies closer to the cur-
rent state often results in smoother and more subtle ani-
mations.

We conclude our results as follows:

• We have been able to show how a camera engine is to be
successfully integrated as part of the dynamic game envi-
ronment. Dynamic templates are created from conditions
set by events, from which constraint-based specifications
are formed.

• We have introduced an efficient and highly flexible way
to compute visibility constraints for an arbitrary number
of points.

• Our camera system works for arbitrary dynamic scenes
and spatial complexities of environments. The camera
needs no specialised collision information – this is han-
dled effectively and automatically by the visibility con-
straint computed from the scene geometry.

• We are the first to provide a constraint-solver based on ex-
isting camera state and motion characteristics. The meth-
ods are fast, consistent, and robust, producing intelli-
gent "nearest-best-fit" frame-coherent camera animations
in real-time by reacting to future conditions.

For future work, we are now able to go a step higher in the
presentation pipeline. We can solve for visual goals knowing
that our low-level constraints will produce coherent results,
that they stay in a partially satisfied region rather than jump
erratically to global best-fit regions. Using an evolutionary
design we can start adding and learning new techniques for
camera management, introducing more sophisticated navi-
gational goals and predictive techniques. The goal is to lead
to an even more enticing atmosphere created by effective
camera work.
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Abstract

The exploration of complex walkthrough models is often a difficult task due to the presence of densely occluded
regions which pose a serious challenge to online navigation. In this paper we address the problem of algorithmic
generation of exploration paths for complex walkthrough models. We present a characterization of suitable proper-
ties for camera paths and we discuss an efficient algorithm for computing them with little or no user intervention.
Our approach is based on identifying the free-space structure of the scene (represented by a cell and portal graph)
and an entropy-based measure of the relevance of a view-point. This metric is key for deciding which cells have to
be visited and for computing critical way-points inside each cell. Several results on different model categories are
presented and discussed.

1. Introduction

Advances in modeling and acquisition technologies allow
the creation of very complex walkthrough models including
large ships, industrial plants and architectural models repre-
senting large buildings or even whole cities.

These often densely-occluded models present a number
of problems related to wayfinding. On one hand, some in-
teresting objects might be visible only from inside a partic-
ular bounded region and therefore they might be difficult to
reach. On the other hand, walls and other occluding parts
keep the user from gathering enough reference points to fig-
ure out his location during interactive navigation. This prob-
lem becomes more apparent in indoor scenes which often in-
clude closed, self-similar regions such as corridors. Finally,
architectural and furniture elements can become barriers in
collision-free navigation systems. For instance, smooth nav-
igation through turning staircases or narrow passages might
require advanced navigation skills.

As a consequence of the above problems, the user may
wander aimlessly when attempting to find a certain place in
the model, or may fail in finding again places recently vis-
ited. Sometimes the user is also unable to explore the whole
model or misses relevant places.

One obvious solution to these problems is to provide the
user with different navigation aids such as maps showing a

sketch of the scene along with the current camera position.
This solution alleviates the problem of disorientation, but
still the user can miss important parts. Moreover, automat-
ically generating illustrative maps is not an easy task. Other
useful navigation aids such as somehow marking already-
visited places are not enough for guaranteeing a profitable
exploration.

Another solution is to explore the model following a pre-
computed path or a selection of precomputed viewpoints.
This path can be provided by the model creator or by an ex-
perienced user who already knows the interesting regions of
the scene, but this is not always feasible. Moreover, this can
also become a disadvantage if we cannot express properly
which are the regions that are important for us to visit. In
any case, this solution also requires a noticeable user effort
during the path definition.

In this paper we present an algorithm for the automatic
construction of exploration paths. Given an arbitrary geo-
metric model and a starting position, the algorithm computes
a collision-free path represented by a sequence of nodes,
each node having a viewpoint, a camera target and a time
stamp. The algorithm proceeds through three main steps.
First, a cell-and-portal detection method identifies the over-
all structure of the scene; second, a measurement algorithm

c© The Eurographics Association and Blackwell Publishing 2004. Published by Blackwell
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is used to determine which cells are worth visiting, and fi-
nally, a path is built which traverses all the relevant cells.

The rest of the paper is organized as follows. Section2
reviews previous work on automatic path generation and
cell-and-portal detection. Section3 presents a characteriza-
tion of the properties that we consider suitable for a cam-
era path. Section4 gives an overview of our approach. Sec-
tion 5 presents our algorithm for the automatic generation of
cells and portals and Sections6 and7 explain how the more
relevant cells are determined and how the exploration path
is built respectively. We present some results in Section8
and conclude our work pointing some lines of future work
in Section9.

2. Previous Work

Motion planning has been extensively studied in robotics,
computational geometry and related areas for a long time.
However, it is still considered to be a difficult problem to
solve in its most basic form, e.g., to generate a collision-free
path for a movable object among static obstacles. As stated
by Canny [1], the best known complete algorithm for com-
puting a collision-free path has complexity exponential in
the number of degrees of freedom of the robot or the moving
object. Good surveys can be found in [2] and [3].

Some approaches for motion planning present algorithms
formulated in the configuration space of a robot. The con-
figuration space (also known asC-space) is the set of all
possible configurations of a mobile object. Isto presents two
approaches, the first one [4] computes a decomposition of
theC-spaceand searches the graph connecting collision-free
areas of the decomposition for a correct path. The second
one [5] divides the search algorithm in two levels: a global
search and a local search.

Other sorts of algorithms are based on randomized mo-
tion planning. Liet al. [6, 7] take input from the user and
predict the location where the avatar should move to. How-
ever, this approach has only been used for navigation in
simple environments due to its high running time. Salomon
et al. [8] present an interactive navigation system that uses
path planing. The path is precomputed using a randomized
motion planning with a reachability-based analysis. It com-
putes a collision-free path at runtime between two specified
locations. However, their system still needs more than one
hour to compute a roadmap for relatively simple models (ten
thousand polygons) and sometimes the results are unnatu-
ral paths. Kallmannet al. [9] present a new method that use
motion planing algorithms to control human-like characters
manipulating objects which allow up to 22 degrees of free-
dom.

In our approach, the configuration space depends on the
spatial structure of the scene and we want to explore it by
means of cells and portals, so the graph we need is com-
pletely different, we need acell-and-portalgraph.

A cell-and-portal graph (CPG) is a structure that encodes
the visibility of the scene, where nodes are cells, usually
rooms, and edges are portals which represent the openings
(doors or windows) that connect the cells. The construc-
tion of a CPG is commonly done by hand, so it is a very
time consuming task as the models become more and more
large and complex. The automatic generation of portals and
cells is therefore a very important issue. There are few pa-
pers that refer to the automatic determination of portal-and-
cell graphs, and most of them work under important re-
strictions. Teller and Séquin [10] have developed a visibility
preprocessing suitable for axis-aligned architectural models.
Honget al. [11] take advantage of the tubular nature of the
colon to automatically build a cell graph by using a sim-
ple subdivision method based on the center-line (or skele-
ton) of the colon. To determine the center-line, they use the
distance field from the colonic surface. Haumontet al. [12]
present a method that adapts the 3D watershed transform,
computed on a distance-to-geometry sampled field. How-
ever, their method only works on cells free of objects, and
therefore these have to be removed previously by hand.

3. Camera path characterization

Given a geometric model, there is an infinite number of
paths exploring it. In order to compute paths algorithmi-
cally we have to identify which are the properties that dis-
tinguish a suitable path from non-useful ones. The following
list presents the main properties users might expect from a
camera path.

• Collision-free
Ideally, a camera path should be free from collisions with
scene objects. However, this is not always feasible since
the input scene might contain interesting parts bounded by
closed surfaces which will be impossible to reach using
this criterion strictly. Therefore we require our paths to
not cross any wall unless it is the only way to enter a cell
bounded by a closed surface.

• Relevant
A good path must show the user the mostrelevantparts
of the model while skipping non relevant or repetitive
parts. Relevance is a subjective quality that depends on
user interests, but requiring the user to identify and mark
relevant objects would compromise the scalability of our
approach. As a consequence, a metric for estimating rele-
vance is required. One contribution of this paper is the use
of entropy-based measurements for quantifying the rele-
vance of a given viewpoint.

• Non-redundant
Ideally, a camera following the path should visit each
place only once. Again, this is often not possible e.g.
traversing the same corridor many times can be the only
way to visit all relevant rooms. We therefore require our
algorithm to avoid already visited places whenever possi-
ble.
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(a) (b) (c)

(d) (e) (f)

Figure 1: Overview of our approach. (a) Input scene (furniture and ceiling not shown); (b) Distance-to-geometry field computed
over the 3D grid (only one slice is shown); (c) Cells detected with random color (note that corridors are also identified as cells);
(d) Cell-and-portal graph embedded in the model space; cells are labeled according to relevance measure; (e) High-level path
computed as a sequence of cells; visited cells is a superset of relevant ones; (f) Final path after smoothing (camera target not
shown).

• Uncoupled target
In most online navigation systems, the camera target is
defined in accordance with the forward direction of the
viewpoint as this facilitates the camera control. However,
precomputed paths do not benefit from this limitation. Un-
coupling the camera target from the advance direction is
often desirable because it allows the user e.g. to watch the
paintings on the ceiling of a room while crossing it.

• Ordered
This property is closely related to the non-redundancy cri-
terion. The path should not leave a room unless all the
relevant details it contains have been visited.

• Self-adjusting speed
In addition to let the user modify the camera speed during
the reproduction of the path, it is also convenient to define
the path so that the speed is defined in accordance with
the relevance of the part of scene being seen. This implies
that the speed increases while traversing open spaces with
distant details or when walking through already visited

places. Similarly, the speed decreases while approaching
relevant objects.

• Smooth
The path creator should try to avoid abrupt changes in
speed, camera position and camera target.

4. Algorithm overview

Our algorithm receives as input an arbitrary walkthrough
model and a starting camera position and computes a
collision-free path represented by a sequence of nodes, each
node having a viewpoint, a camera target and a time stamp.

The algorithm proceeds through three main steps (see Fig-
ure1).

First, we identify the free-space structure of the scene by
computing a cell and portal graphG = (V,E) over a grid
decomposition (Section5). Our cell and portal graph differs
from the ones used for visibility computation in that we do
not need to classify the scene geometry against the cells nor
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do we need to compute the exact shape of the portals. In fact,
our cells are simply represented by a collection of voxels and
for each portal we just need a single way-point. This cell de-
composition allows the algorithm to produce paths with min-
imum redundancy where cells are visited in a natural way,
the portals being suitable waypoints.

In a second step (Section6) we use an entropy-based mea-
surement algorithm to identify the cells inV that are worth
visiting (relevantcells). This step filters out non-interesting
cells and also ensures the robustness of the algorithm against
an over-decomposition of the scene into cells due to geomet-
ric noise.

The last step builds a camera path which traverses all the
relevant cells and visits the more interesting places inside
each cell (Section7). This task is accomplished at two lev-
els. We first decidein which order the relevant cells should
be visitedby computing a pathH over the cell-and-portal
graph. We callH thehigh-levelpath, which is just an ordered
sequence of cell identifiers and portals connecting adjacent
cells. For this task the algorithm must find the shortest path
traversing all the relevant cells while minimizing the traver-
sal of non relevant cells and repeating cells. At this point
our path contains only a few waypoints which correspond to
the portals connecting adjacent cells on the high-level path.
The next task is to decide how to refine the pathinside each
cell. This is accomplished by computing a sequence of way-
points for visiting each cell from an entry-point to an exit-
point. Again the entropy-based measure is used for deciding
both the waypoints and the best camera target at each view-
point. Note that both entry and exit points are just the center
of the portals connecting the current cell with the previous
cell and the next cell respectively. Finally, a simple postpro-
cess smoothes the path and adjusts the speed in accordance
to the precomputed relevance of the viewpoints.

5. Automatic portal and cell detection

The creation of the cell-and-portal graph pursues two aims.
On the one hand, the cell decomposition provides a high-
level unit for evaluating the relevance of a region and for
deciding whether this region should be visited or not. More-
over, this decomposition allows for solving the problem of
finding collision-free paths considering only one cell at a
time. On the other hand, the portal detection provides a first
insight into the final path because portals are natural way-
points.

Our approach for computing the cell-and-portal graph
is based on conquering quasi-monotonically decreasing re-
gions on a distance field computed on a grid. The cell de-
tection is organized in successive stages explained in de-
tail below. First, we build a binary grid separating empty
voxels from non-empty ones. Next we approximate the dis-
tance field using a matrix-based distance transform. Then we
start an iterative conquering process starting from the voxel

having the maximum distance among the remaining voxels.
During this process, all conquered voxels are assigned the
same cell ID. A final merge step eliminates small cells pro-
duced by geometric noise. Finally, faces shared by voxels
with different cell ID’s are detected and portals are created
at their centers.

5.1. Distance field computation

The first step converts the input model into a voxel represen-
tation encoded as a 3D array of real values. Voxels traversed
by the boundary of the scene objects are assigned a zero
value whereas empty voxels are assigned a+∞ value. This
conversion can be achieved either by a 3D rasterization of
the input model or by a simultaneous space subdivision and
clipping process supported by an intermediate octree [13].

The next step involves the computation of a distance field
(Figure1-b). The distance field of an object is a 3D array
of values, each value being the minimum distance to the
encoded object [14]. Distance fields have been used suc-
cessfully in generating cell-and-portal graph decompositions
[12]. The distance field we consider here is unsigned. Dis-
tance fields can be computed in a variety of ways (for a
survey see [14]). We approximate the distance field using
a distance transform. Distance transforms can be imple-
mented through successive dilations of the non-empty vox-
els and more efficiently by a two-pass process. The Chamfer
distance transform [14] performs two passes through each
voxel in a certain order and direction according to a dis-
tance matrix. The local distance is propagated by the ad-
dition of known neighborhood values provided by the dis-
tance matrix. In our implementation we use the 5x5x5 quasi-
euclidean chamfer distance matrix discussed in [14]. Indeed,
our experiments show that computing the distance field on
a horizontal slice of the voxelization (using the central 5x5
submatrix) leads to better cell decompositions as it limits the
influence of the floor and ceiling and it is less sensitive to ge-
ometric noise caused e.g. by furniture. Note that the maxima
of the distance transform (white voxels in Figure1-b) can be
seen as an approximation of the Medial-Axis Transform.

5.2. Cell generation

The cell decomposition algorithm visits each voxel of the
distance field and replaces its unsigned distance value by a
cell ID. We use negative values for cell ID’s to distinguish
visited voxels from unvisited ones. The order in which vox-
els are visited is key as it completely determines the shape
and location of the resulting cells.

The order we propose for labeling cells relies on a con-
quering process starting from the voxel having the maximum
distance among the remaining unvisited voxels. This local
maximum initiates a new cell whose ID is propagated using
a breadth-first traversal according to the following propaga-
tion rule. Letv be the voxel being visited, and letDv be the
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procedurecell_decomposition
cellID = -1
S = sort_voxels()
while not_empty(S)do

(i,j,k) = pop_maximum(S)
if grid[i,j,k]>0 then

expand_voxel(i,j,k,cellID)
end
cellID = cellID - 1

end
end

Figure 2: Cell decomposition algorithm

distance value at voxelv. The current cell ID is propagated
from v to a face-connected neighborv′ if 0 < Dv′ ≤ Dv, i.e.
the distance value atv′ is positive but less or equal than the
distance atv. The propagation of the cell ID continues un-
til the whole cell is bounded by voxels having either nega-
tive distance (meaning already visited voxels), zero distance
(non-empty voxels) or positive distance greater than the vox-
els at the cell boundary. Then, a new unvisited maximum is
computed and the previous steps are repeated until all non-
zero voxels have been assigned to some cell (Figure2).

Furniture and other scene objects might exert a strong in-
fluence on the distance field, causing many local maxima to
appear and therefore producing an over-segmentation of the
cell decomposition. A straightforward solution could be to
remove by hand all furniture elements before the model is
converted into a voxelization, which is the solution adopted
in [12]. The solution we propose is to relax the propaga-
tion process by including a decreasing tolerance value in
the propagation rule: the ID is propagated fromv to v′ if
0< Dv′ ≤Dv+ε, whereε vanishes to zero as the cell grows.
The consequence of this aging tolerance is that small varia-
tions of the distance field near the cell origin do not impact
their propagation. This variation is less sensitive to noise
than a watershed transform considering simultaneously all
local maxima [12]. The connectivity used during the propa-
gation process is 4-connectivity in 2D and 6-connectivity in
3D. A two-dimensional propagation suffices e.g. when the
camera height (with respect to the floor) remains constant
during the path.

5.3. Cell merging and portal detection

A cell merging process further improves the cell decomposi-
tion by merging uninteresting cells. Let|A| be the size of cell
A, measured as the number of voxels, and letPortal(A,B) be
the number of voxels shared by cellsA andB. We use the
following merging rules: (a) if|A| is smaller than a given
minimum size then the cell is merged with the cell sharing
the large number of boundary faces withA; if no such a cell
exist (i.e.A is bounded by 0-distance voxels) then the cell
A is removed; (b) ifPortal(A,B) is greater than a maximum

portal size, then cellsA andB are merged into a single cell.
The results shown in Section8 have been computed using
only the first rule.

The graph nodes inV correspond to the identified cells
and the graph edges inE correspond to links between adja-
cent cells. Besides the graph connectivity, each cell is rep-
resented by a collection of face-connected empty voxels and
a graph edge connecting two cells is represented by the col-
lection of portals shared by the two cells. Portal detection is
straightforward and requires a single traversal of the voxels
identifying faces shared by voxels with different IDs. Por-
tals correspond to connected components of shared voxels.
Each portal is assigned a single point that can be computed
as the portal center. An alternative which works better for
non-planar portals consists in keeping the distance field val-
ues during the cell generation process (instead of re-using
these values for storing the cell IDs) and compute the por-
tal representant as the voxel with the highest value on the
distance field (i.e. the point on the portal farthest from the
nearby geometry). These points are candidates for waypoints
in case the path has to cross the portal for going from one cell
to another.

6. Identifying relevant cells

Once we have determined the graph of portals and cells, the
following step is to determine which are the cells that are
worth visiting in the model.

The data structure built to determine the cell-and-portal
graph is also useful to give a set of points inside each cell.
Given this set of points, we can determine if the cell is rel-
evant by measuring the amount of information that can be
seen from each point of the set. In order to compute the
amount of information we use an entropy-based measure,
dubbed viewpoint entropy, which has been successfully ap-
plied to determine the best view of objects and scenes [15].
We measure and store the point of maximum entropy for
each cell and then choose those cells that have a higher rel-
evance. These selected cells will be therelevant cellsto be
visited.

6.1. Viewpoint Entropy

Viewpoint entropy is a measure based on Shannon en-
tropy [16]. It uses the projected areas of the visible faces on
a bounding sphere of the viewpoint to evaluate how much of
the visible information can be seen from the point. For a sin-
gle view, we only need to render the scene into an item buffer
from the viewpoint. Then, the buffer is read back and we sum
the area of each visible polygon (actually as we should ren-
der to a sphere, we weigh each pixel by its subtended solid
angle, to calculate entropy properly). Then, the relevance is
computed using the following formula:
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Hp(X) =−
Nf

∑
i=0

Ai

At
log

Ai

At
,

whereNf is the number of faces of the scene,Ai is the pro-
jected area of facei, At is the total area covered over the
sphere, andA0 represents the projected area of background
in open scenes. In a closed scene, or if the point does notsee
the background, the whole sphere is covered by the projected
areas and consequentlyA0 = 0. The maximum entropy is ob-
tained when a certain point canseeall the visible faces with
the same relative projected areaAi/At . To cover all the sur-
rounding space we need six projections (similarly to the cube
map construction process).

6.2. Relevance cell determination

To detect the important cells, we select a set of viewpoints
inside each cell. The candidate points are given by the cell
detection algorithm (for example one per voxel if voxel size
is small enough). The viewpoint entropy of each candidate
point is evaluated and stored in order to select the best one,
whose entropy will indicate the relevance of the cell. Usu-
ally, the cells detected in the first step will be relatively free
of objects, and large occluders will naturally determine new
portals and cells. Throughout the process of determination
of the relevance of a cell, we can store the visible projected
areas of each face for each evaluated viewpoint. Then, we
can determine the best set of views by iteratively selecting
the best one, marking the already visited faces, and recom-
puting the entropy values for the rest of the views only taking
into account the not yet visited faces [15]. If almost all the
visible faces were visible from the best view, this means that
there are no large occluders in our cell. Otherwise we select
more than one important point in the cell for a future visit.
Note that the example in Section8 only yields one viewpoint
per cell, as the selected points are placed relatively close to
the center and therefore they capture much information. No-
tice that if the discretization is roughly the same, the camera
will be attracted by regions of high number of polygons.
Otherwise, we can set an importance value to the polygons
we consider interesting (such as the ones belonging to stat-
ues). In the examples presented here we have not considered
texturing, but this can be addressed using a region growing
segmentation and posterior color coding of the regions to in-
clude the resulting texture in our measure as different poly-
gons, as detailed in Vázquezet al. [15]. Viewpoint entropy
has also been used for automatic interactive navigation in
indoor scenes [17]. Unfortunately, the lacking of knowledge
of the general structure of the model makes it difficult to en-
sure that the camera will pass through all the relevant cells.
An entropy-based measure has also been presented and used
to automatically place light sources [18].

7. Path construction

With the information collected from the previous two steps,
we can build a minimal length path through the graph that
visits all relevant cells. Our objective is not only to determine
the path that covers all interesting cells but to determine at
each moment which is the suitable camera position in order
to see the highest amount of information of the scene.

7.1. High-level path

The first step on the path construction is to decide in which
order the path will visit the relevant cells. We compute a
high-level pathH over the cell-and-portal graph which is the
shortest path traversing all the relevant cells from the initial
point given by the user.

Given the set of relevant cells to visit and the initial cell,
the problem of finding the shortest path traversing all the rel-
evant cells is similar, but not equal, to the traveling salesman
problem (TSP) which is an NP-complete problem [19]. We
use a backtracking algorithm optimized by discarding par-
tial solutions when they are longer than an already found
solution. When the search is finished, we have a group of
solutions that are minimal on its length (number of nodes
traversed), and we choose the one with minimal node repeti-
tion. The cost of this algorithm is not enlarging the total cost
of the approach much since the models usually don’t have
more than 50 cells. Nevertheless the cell merging process in
phase 1 can be adjusted to limit the number of cells.

7.2. Low-levelpath

The low-levelpath can be computed just after the high-level
path generation. Once we know which cells have to be vis-
ited and which is the ordering, we get an entrance and an ex-
itance point for each cell. This, together with the best view-
point (or viewpoints) of each cell allows us to build a smooth
path. To build this path we perform two steps:

1. Path detection
2. Path approximation

As we do not know in advance which is the geometry of
the cell and we only get a set of points inside it, the deter-
mination of a free-from-obstacles path must be done accu-
rately. Given the set of points corresponding to voxels in-
side a cell, we build a graph where the nodes are the points
and the edges the connectivity of the points to the neigh-
bors. This can be carried out very fast. Then, we apply an
A* algorithm [20] to search the best path from the entrance
point to the best point of the cell, and we apply it again to
reach the exit from the best point. For complex cells (i.e. the
cells that generate more than one best points) this is applied
iteratively until reaching the exit. In these cases, the itera-
tion is also applied from the exit point to the entrance point,
generating an alternative path which could be shorter than
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the previous one. If thisbackwardspath is shorter, we will
choose it reverting the point order.

The generated path is a polyline that is not necessarily
smooth. To avoid sharp moves through the exploration pro-
cess, we relax the path by using an interpolation based on
Hermite curves [21]. We set a control point every two points
of the path and build a smooth path that goes from the en-
trance to the exit. At each control point we use as tangent
direction the vector joining the current point with the next
path point. Note that it is better not to enforceC1 continuity
on the path at the best view point. The best point is sup-
posed to show a high amount of interesting information, so
the walkthrough will stop there and the camera will rotate to
allow the user to see all the important information. In Fig-
ure3 we can see an example of a path inside a cell. As the
set of camera positions is very dense, we have only drawn
one out of five camera positions. The yellow line indicates
the orientation of the camera at these positions.

Figure 3: An example path inside a cell. Camera positions
are shown in red and the orientations appear as yellow lines.

7.3. Complete Walkthrough

After the construction of the path, we want to determine
which are the camera orientations that better show the scene
during the navigation.

In a similar process than the one that determines the best
point inside each cell, we place a camera at each point of the
path and, for each point, we evaluate the amount of informa-
tion that can be seen at different orientations and choose the
orientations that will yield better results. This is computed
almost interactively. We set some reasonable constrains to
camera moves in order to build a smooth path.

• Limited rotation: The camera must be oriented forward,
we do not allow rotations of more than 30-40 degrees
from the walking direction in order to maintain a normal

movement sensation during the walkthrough. If the cam-
era were allowed to point backwards, the user could feel
uncomfortable.

• Correct orientation at endpoint. People usually look for-
ward when traversing a portal. We simulate this by lim-
iting the rotation of the camera when it is reaching the
exit point. When the camera is close to the way out, it
smoothly starts turning back to the walking direction, and
we ensure that it is at the correct orientation before cross-
ing the portal.

For each cell the path is built in the following way. We
place the camera at the entrance point of the cell and pointing
towards inside the cell. Then, the best new camera orienta-
tion is computed by evaluating the possible new orientations
(these measures are calculated on the back buffer), we allow
only small rotations in order to make the movements smooth.
For a given point and camera orientation, five different views
are inspected, as depicted in Figure4.

Figure 4: The possible changes of orientation of the camera
at each step

To decide which of the orientations is the best, we take
into account the amount of information visible from each
camera configuration, as well as the history of the visited re-
gions. This can lead to a problem when there is a very com-
plex region in a cell, because the camera would be always
pointing there. In order to avoid this, we keep track of the
visited faces. For each view, when we analyze the amount
of visible information we only take into account the faces
that have not been visited yet. However, as the path will con-
tain one or two hundred different positions at each cell, this
could be a problem if we considered a polygon as visited
if it had appeared in a single view, because it could cause
the camera to change the orientation continuously. As we
want the user to be able to see the environment properly, we
have implemented a pseudo aging policy. We only consider
a face visited when it has been seen at least in 20 different
views, then it is marked and it will not be considered again.
This strategy ensures that the regions of higher information
will be visited and that the user will be able to stare at them
calmly.
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(a) (b) (c)

(d) (e) (f)

Figure 5: Results in the church model. (a) Top view of the original model. (b) Computed distance field on a 128x128x128 grid.
(c) Final cells detected after the merging process. (d) Ordered cells based on their entropy. (e) High level path through the 5
most interesting cells. (f) Computed low-level path for the most interesting cell.

8. Results

We have presented a complete approach for automatically
generating guided tours through complex walkthrough mod-
els. In contrast to other approaches, our method is com-
pletely automatic, the only input really required is an initial
point.

Images of the whole process appear in Figure5. In Fig-
ure5-a we show the plan of the original model. The compu-
tation of the distance field map appears in Figure5-b. After
the distance field computation, the cell and portal genera-
tion detects a set of cells that are then refined through the

merge process. The result of the merge for this example is
shown in Figure5-c. With this information we can proceed
to compute the relevance of each cell. This generates an or-
dering between the cells that is depicted in Figure5-d. After
the cell evaluation, we choose a subset of cells with high en-
tropy. In this case the threshold chosen selects cells 1 to 5,
and the starting point of the path is at cell 4, the entrance
of the church. Then, a high level path is calculated using
the backtracking method explained in Section7.1. The com-
puted high level path is shown in Figure5-e. For each cell,
a low level path is computed from the entrance point to the
best view of the model. As an example, we show the path
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corresponding to the most important cell in Figure5-f. Note
that the generated path has almost 200 camera positions, so
we have only shown one out of 5 camera positions (with
their corresponding orientations) for the sake of clarity. As
we have commented, we do not force continuity on the best
viewpoint, as at this point, the camera rotates to show the
information all around that was not already seen during the
previous walkthrough positions.

The total computation time was 10 minutes and 40 sec-
onds on a 2GHz PIV with a GeForce Ti graphics card and
512Mb of memory with a model (the church model) of
63312 polygons. The bottleneck is the cell relevance evalua-
tion process and the low-level path calculation because both
require rendering the scene multiple times, which could ben-
efit from the portal-and-cell graph if we used this for portal
culling. More results can be found inhttp://www.lsi.upc.es/
˜ virtual/EG2004.html

In our current implementation the output of our algorithm
can be used in several ways. Thefull-auto mode consists in
the reproduction of the path by letting the camera follow the
precomputed viewpoints and targets. Theguided-tourvaria-
tion would let the user look around during the navigation by
allowing him or her to control the target but not the view-
point. Finally, in thefreemode the path nodes are rendered
as arrows oriented along the direction of the next waypoint.

9. Conclusions and Future Work

We have presented a fully automatic system for the gener-
ation of walkthroughs inside closed environments that can
be segmented using a cell-and-portal approach. The method
can be useful as a way to automatically create visits of
monuments or presentations of buildings, and can also be
a good tool in the context of interactive systems as a first
constrained path to help the interactive user navigate an en-
vironment.

As future work we want to introduce a hierarchical struc-
ture, concretely an octree representation to optimize the cell
detection process. Moreover, we would like to further limit
the effects of the furniture in the cell detection algorithm.
An interesting issue would be to be able to compute cells in
outdoor sparse scenes.
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Abstract 
 
We describe a new interaction technique, called HoverCam, for 
navigating around 3D objects at close proximity. When a user is 
closely inspecting an object, the camera motions needed to move 
across its surface can become complex. For tasks such as 3D 
painting or modeling small detail features, users will often try to 
keep the camera a small distance above the surface. To achieve 
this automatically, HoverCam intelligently integrates tumbling, 
panning, and zooming camera controls into a single operation. 
This allows the user to focus on the task at hand instead of 
continuously managing the camera position and orientation. In 
this paper we show unique affordances of the technique and 
define the behavior and implementation of HoverCam. We also 
show how the technique can be used for navigating about data 
sets without well-defined surfaces such as point clouds and 
curves in space.  

Categories and Subject Descriptors: I.3.6 [Computer Graphics]: 
Methodology and Techniques – Interaction Techniques; H.5.2 
[Information Interfaces And Presentation (HCI)]: User Interfaces – 
Interaction styles, Input devices and strategies. 
Additional Keywords and Phrases: interaction techniques, camera 
controls, 3D navigation, 3D viewers, 3D visualization. 

1    Introduction 
The most commonly used operation in 3D computer graphics 
and animation software is camera movement. Users often move 
the camera to help them sense the 3D properties of a model or 
animation or while performing modifications. When working at 
close proximity to an object like, for example, when painting 
details on an object, the camera must often be moved to see 
neighboring surfaces. However, despite the heavy usage of 
camera tools in 3D content creation software, the industry 
standard zoom, pan, and tumble tools have been the primary 
camera controls offered to users for over a decade. 

 

For keyboard and mouse based user interfaces, interactive 3D 
camera control is fundamentally difficult because the task 
involves controlling the six distinct degrees of freedom (DOF) 
(translation x,y,z and rotation α,β,χ) of the virtual camera with 
just two DOF of mouse input. The simplest approach is to 
assign the two DOFs of the mouse to two different DOFs of the 
camera, at different times. However, more sophisticated 
approaches that emulate real world behaviors, or better match 
the task at hand and/or the skills of the user, have largely 
replaced the simple approach. For example, the industry 
standard zoom, pan, and tumble tools reflect typical methods of 
controlling physical camera from the film production industry. 
Even more sophisticated camera control techniques take into 
account information about the scene. For example, 3D video 
games often have a walking metaphor of camera motion. This 
metaphor suggests many things: there is a ground plane, the 
viewpoint is somewhat above the ground, camera rotation is 
egocentric, there is notion of which way is “up”, etc. These 
constraints simplify camera motion from a general 6 DOF 
problem to almost a 2 DOF problem. Further constraints, such 
as collision detection, prevent the camera from passing through 
walls, characters, and objects in the scene. This entire set of 
constraints is needed to convey the walking camera metaphor. 

The camera metaphor we explore in this paper is navigation 
around 3D objects at close proximity.  For this task, we would 
like to move around the object while maintaining a fixed 
distance from the surface and while keeping the object roughly 
centered in the field of view. We call this metaphor object 
inspection. As with the walking metaphor described above, we 
attempt to use as many constraints as possible, given by the 
context of our metaphor, to simplify the number of controls 
needed to navigate through space during typical object 
inspection. 

 

Figure 1. Desired HoverCam motion over a sphere and 
a cube (shown in profile). 
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2    HoverCam 
Figure 1 shows the type of camera motion behavior we would 
like for a simple sphere and cube. Note that given the 
constraints of (1) keeping the camera a fixed distance from the 
surface and (2) relatively normal to the surface effectively 
creates a shell around the object being observed, on which the 
camera can be positioned. Around curved surfaces, the camera 
follows the surface but at a fixed distance. Around corners, the 
camera turns to smoothly move toward a neighboring surface. 
Finally, around flat surfaces, like the side of the cube, the 
camera pans as expected to keep the underlying surface facing 
the viewpoint. 

Camera paths like these can be achieved using the traditional 
separate pan, zoom, and tumble tools but at the cost of 
constantly switching between the three tools. Also, as these 
tools do not typically perform any collision detection, users may 
end up in awkward locations inside the object, looking away 
from the object, or at great distances for the object. For 
example, in Alias’ Maya software, the system is placed in 
camera mode by holding down the alt-key. Dragging with the 
left mouse button then tumbles the camera (rotates about the 
current look-at point). Dragging the middle mouse button pans 
the camera (translates the eye and the look-at point) and 
dragging with both left and middle mouse buttons performs 
zooming (moving the eye toward or away from the look-at 
point). Releasing the alt-key stops the camera tool and reselects 
the user’s previous tool.  

A smooth camera path around the outside of an object is simply 
not achievable with these separate tools. To keep a point of 
interest on the surface of the object near the center of the view, 
the user must always overshoot, switch tools, correct the view 
with another tool, overshoot again, and so on.  

2.1    Basic HoverCam Algorithm 
A smooth camera path can be achieved with a trajectory 
algorithm loosely based on the model of a satellite orbiting an 
object with a gravity field (see Figure 2). The steps performed 
are: 

(a) apply user input to the eye point E0 (current camera 
position) and look-at point L0, to create E1 and L1,  

(b) search for the closest point C on the object from the 
new eye position E1,  

(c) turn the camera to look at C, and, 
(d) correct the distance δ1 to the object to match the 

original distance to the object δ to generate the final 
eye position E2. 

(e) clip the distance traveled (discussed in Section 2.5). 

This algorithm, in effect, selectively combines the operations for 
zooming, panning, and tumbling during a single mouse drag. 
This has the advantage that HoverCam only requires a single 
button mouse, pen-press, or a single finger press on a touch 
screen to apply camera motion. In contrast, as mentioned earlier, 
standard zoom, pan, and tumble tools typically require multiple 
buttons to switch between the operations for zooming, panning 
and tumbling. Furthermore, to achieve HoverCam motion with 
the traditional separate tools would require ongoing switching of 
the tools to continually correct the camera motion to follow the 
surface. 

 

Figure 2. Basic Camera Update Rules. (a) move eye 
based on user input, (b) look for C, closest point on 
object, (c) turn camera to C, and (d) correct distance. 

Using HoverCam has the feeling of hovering above the object. 
Figure 3 shows two sets of screen images showing the user’s 
perspective as HoverCam is being used to inspect a cube and a 
cylinder, maintaining a consistent scale and distance from the 
object. Note how HoverCam pans on the side of the cube, and 
turns about the corner of the cube. Also note that on the 
cylinder, the camera pans along the shaft, turns smoothly to the 
end disc, and pans across the disc.  

To highlight the difference between traditional center-based 
camera motion and surface-based camera motion, see the 
example of motion about a cylinder in Figure 4. With the simple 
traditional tumble, the rotation about the cylinder would have 
placed the camera inside the object. However, with HoverCam, 
moving to the right pans the camera until it can rotate about to 
continue panning across the end disc. 
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Figure 3. HoverCam around a cube and a cylinder, 
from the point of view of the user. 

 

Figure 4. Simple Rotation versus HoverCam: The grey 
path shows how a simple rotation about the center of a 
cylinder leaves the camera within the object. However, 
HoverCam moves the camera along the cylinder and 
only rotates when turning about the end of the shaft 
(black path). 

2.2    Blending Camera Techniques 
As HoverCam would normally be used together with traditional 
freeform navigation tools, we have designed HoverCam to 
interoperate between the various camera techniques in a fairly 
seamless way. Freeform camera motion allows the user to 
navigate to any point in space and to face in any direction. For 
specific surface-based tasks like 3D painting or sculpting, 
HoverCam provides a subset of this freedom with the benefit of 
following the surface. Switching from HoverCam to a freeform 
camera could simply be invoked by clicking on a tool icon or by 
a key press. However, switching from a freeform camera to 
HoverCam may cause an abrupt reorientation and reposition of 
the camera because an initial search may find a result quite far 
from the current view. Two methods are used to ease this 
disruption. In the case where a freeform camera approaches an 
object from a significant distance, a field of influence around the 
object specifies how strongly the HoverCam motion is linearly 
interpolated with the freeform motion. In the case where a 
freeform camera is already very close to an object (fully within 
the HoverCam field), motion clipping (as discussed in Section 
2.5) is applied to smoothly transition to HoverCam motion. 

Layers of HoverCam influence around each object are 
automatically generated (see Figure 5). The outer layer is quite 
far from the surface and specifies a field of influence.  Once a 
freeform camera enters this field, the HoverCam camera is 
weighted together with the freeform camera so that it will be 
sucked towards the outer limit of the orbit distance (see Figure 
6). Once the camera is fully controlled by the HoverCam 
algorithm, it remains so until the user switches to another 
navigation method. In practice, we have found it helpful for the 
user to be able to specify the distance between the surface and 
the camera. In our current implementation, the mouse-wheel is 
used to zoom in or out to specify a new fixed distance to the 
HoverCam algorithm. The HoverCam camera orbit distance will 
always be between the inner limit and the outer limit unless the 
user zooms out beyond the field of influence. 

 

Figure 5. HoverCam Layers: A large outer shell acts a 
type of gravity field that interpolates traditional camera 
motion with the HoverCam camera motion until the 
Outer Limit of the Orbit Distance is reached.  
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Figure 6. HoverCam Layers: As the camera approaches 
an object, HoverCam is slowly engaged. 

2.3    Different Notions of “Up” 
When closely inspecting an object in an abstract empty virtual 
environment, the problem of correctly orienting the camera, so 
objects do not appear to be sideways or upside-down, is not 
trivial. Furthermore, the model chosen to derive the up-vector at 
a given camera position, or given a certain camera motion, may 
alter the overall camera metaphor. We define four up-models: 
Global, Local, Driving, and Custom. 

Global: Consider a globe representing the earth. Regardless of 
where the camera may be positioned, or how it moves, up is 
typically the direction toward the North Pole. For example, 
whether the user is looking at Australia or Sweden, the camera 
would be oriented so that the North Pole would be toward the 
top of the screen. If the user moved across the North Pole from 
Canada to Russia, the camera would effectively spin about 180˚ 
so that it would come down on the Russian side, but with the 
North Pole still toward the top of the screen. This constant up-
vector high above the center of the scene defines our Global Up-
Vector Model as shown in Figure 7. 

 
Figure 7. Global Up-Vector Model. 

Local: In this egocentric model, the up-vector is view dependent 
and always points toward the top of the viewport. Therefore, 
moving the cursor left or right does not affect the up-vector. 
However, moving up or down causes the up-vector to be 
corrected so that the user never feels as though they have turned. 
For example, when moving over the North Pole of a globe from 
Canada to Russia, if Canada initially looked the right way up, 
Russia would appear upside-down. See Figure 8. 

 
Figure 8. Local Up-Vector Model. 

Driving: For some objects, the user may wish to have the feeling 
that moving the input device left or right should turn the object 
so that moving (the device) up is always “forward”. Again, 
using the globe as an example, if we started over Brazil with the 
equator horizontal across the view and we moved the input 
device to the right, the horizon would rotate in the view until 
vertical, with the North Pole toward the left hand side of the 
screen. See Figure 9. This model could also be considered for a 
“flying” camera metaphor since it smoothly banks the camera in 
the left or right direction of mouse motion. 

 

Figure 9. Driving Up-Vector Model. 

Custom: Finally, some objects may require custom up-vector 
fields. For example, a model of an automobile would normally 
have the up-vector point from the car to high above the top of 
the roof.  However, if a user was looking underneath the car or 
above the car, it may seem proper to have up be towards the 
hood. In this case, custom up-vectors could be placed on the 
sides of an enclosing cube, which would be interpolated based 
on the current camera position, to determine the current up-
vector. In our current implementation, the user can move to any 
point in space and press a hotkey to generate an up-vector at the 
current position and orientation.  In this way, a complex up-
vector field may be authored. See Figure 10. 

 

Figure 10. Custom Up-Vector Model. 
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2.4    Input Mapping 
The mapping of mouse motion to camera motion may either be 
push (egocentric) or pull (exocentric). In a push mapping, the 
user conceptually pushes the camera so that, for example, 
moving the mouse from left to right would push the camera to 
the right causing the model to appear to move left. With a pull 
mapping, the user pulls the world in the direction of motion so 
that dragging from left to right moves the object from left to 
right, achieved by moving the camera to the left. 

The name of our technique –HoverCam– implies that the user is 
controlling a craft floating above the surface of an object and so 
one may expect the push mapping to be most effective. 
However, given our object inspection metaphor, we typically 
expect to be very close to the object so that it fills most of the 
display. As such, when the user clicks to drag the mouse, the 
cursor will typically be over the object when the mouse button is 
clicked. This strongly conveys a metaphor of grabbing the 
object at that position and dragging it in the mouse direction, 
which implies that the camera will move in the opposite 
direction. For this reason, we chose the pull mapping. 

Still, during a single click-drag-release input event series, a 
discrepancy can occur between the direction that the input 
device is moving and the intended camera motion in the scene. 
For example, for the camera motion shown in Figure 7, the user 
would move the mouse down until they reached the North Pole, 
but continuing to move down would do nothing. To move down 
the other side, the user would have to move the mouse in an 
upward direction. This can make the user feel as though they are 
“stuck” and this can be fairly confusing. To fix this discrepancy, 
HoverCam uses two up-models: one for internal calculations 
and one for display to the user. Internally, the Local up-model is 
used, which will move continuously across the top of the globe 
in a single drag motion without getting stuck, as shown in 
Figure 8. However, the up effect that the user sees may be any 
one of the four methods described above. This is implemented 
by applying the Local model to the camera position and 
orientation, followed by the application of the chosen up-model. 
As this update is applied during every mouse-move event, the 
user only feels the effect of the chosen up-model. 

An appropriate choice for the up-vector model may be highly 
content dependent and may be a user preference or may be 
uniquely associated with each model in a scene. 

2.5    Fighting Cavities 
This basic algorithm shown in Figure 2 nicely handles simple 
convex surfaces, slightly concave surfaces, and jumps across 
gaps or holes. However, the true closest point may be outside 
the current field of view (FOV) or may even be behind the 
camera. In these cases, turning the camera to immediately face 
the new closest point would be quite disorienting and may result 
in some undesirable effects. This can occur if the object has 
protrusions, or cavities.  When gliding over a cavity, for 
example, the closest point will jump from one edge of the cavity 
to the other. Step (e) of the algorithm clips the final distance 
traveled (of both the eye and the look-at point) to minimize 
these effects, slowly turning the camera to the intended position. 

Specifically, to maintain smooth camera motion, Step (e) looks 
at the vectors (see Figure 11) from the old closest point to the 
new closest point (L0L2) and from the old eye position to the 
new eye position (E0E2). We then clip these vectors to the length 

δ of the input vector i generated by the mouse move. This 
creates the final eye to look-at vector E3L3. 

 
Figure 11. Motion Clipping. The final position of E0 
and L0 are clipped from E2 and L2 to E3 and L3. 

This motion-clipping step handles sharp camera turns and jumps 
across holes in an object or jumps across gaps to other objects. 
Figure 12 shows the HoverCam camera path while moving 
across the top of a torus (from left to right). Note how extra 
steps are generated across the hole in the torus, when the closest 
point is on the right-hand side, to smoothly turn toward the other 
side of the torus to continue around it. 

 
Figure 12. When moving across the hole in the torus 
(from left to right), HoverCam generates the extra steps 
needed to maintain smooth motion. 

However, the camera motion shown in Figure 12 is only 
possible with an additional constraint. At the point where the 
camera is directly over the center of the torus, there are an 
infinite number of solutions when searching for the closest 
point. To resolve cases such as this, and to favor the user input, 
a restricted FOV constraint is added in step (b) to only look for 
the closest point in the general direction of the input vector (see 
Figure 13). There are two inputs to this constraint: the input 
vector i and the angle of the field of view β. In our current 
implementation, β is fixed at 45˚, but could be based on the 
view frustum. P0 is the point along the vector formed by adding 
i to L0 and ensuring L0E0P0 is ½ β. All geometry outside the 
triangular wedge determined by E0L0P0, with a thickness of 2δ 
and a length extending infinitely away from E0, is disregarded 
during the search for the closest point to E0.  

 
Figure 13. Restricted Search FOV. By restricting the 
search volume for a new closest point, the camera 
motion favors the user input. 
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This constraint helps HoverCam to handle a number of 
situations. In the torus example, a new closest point is found 
directly across the hole and the motion clipping turns the camera 
toward it. In concave shapes, where again, an infinite number of 
points are all equally close to the eye position, the user input 
helps to uniquely select a subset of results (see Figure 14). 

 

Figure 14. When moving across the inside of an open 
sphere (from left to right), the Restricted Search FOV 
and the motion clipping work together to create the 
expected camera motion. 

To summarize, the restricted FOV for searching (in step (b)) 
taken together with the motion clipping (step (e)), handle the 
cases where there are multiple solutions thereby providing the 
expected camera motion. 

2.6    Handling Sharp Turns 
While the basic camera update steps outlined above generate 
smooth camera motion paths, tight corners can create hooks in 
the path that could be avoided. The problem is caused by the 
restricted search FOV that prevents the algorithm from finding 
an upcoming corner. For example, when moving right along a 
wall towards a corner, HoverCam looks directly ahead at the 
wall while panning right. However, the restricted FOV prevents 
HoverCam from seeing the approaching corner. The corner will 
eventually be found but this will push the camera back to the 
fixed distance from the surface effectively generating a hook in 
the camera path (see Figure 15). 

 

Figure 15. Hook in camera motion path when turning in 
a corner while moving left to right (from A to D). 

To achieve the preferred trajectory, HoverCam includes a 
second FOV that searches for obstacles in the direction of 
motion (see Figure 16). The search for the closest point then 
includes both the restricted search FOV and the obstacle FOV. 
The closest point in either FOV will be considered to be the 
target point that we would like to veer towards. 

 

Figure 16. Restricted FOV along underlying surface 
and Obstacle FOV looking ahead in the direction of 
movement, as specified by the input vector i. 

Now, when a corner is reached, the camera correctly turns in the 
direction of the input until it continues along the next wall (see 
Figure 17). The imminent collision with the wall is detected and 
the closest point will then be contained on that wall. Several 
steps are made while the camera turns toward it after which the 
camera carries on normally. 

 

Figure 17. No hook in camera motion path when 
turning in a corner, while moving left to right (from A 
to C). 

3    Implementation 
We implemented a HoverCam prototype application in C++ 
under Windows XP. We added basic functionality for loading 
Wavefront (obj) models and rendering them using of the 
OpenGL graphics library. We also added visualization functions 
to record user input and draw the motion paths shown in the 
figures in this paper. 

As outlined above, the general HoverCam algorithm is based on 
a closest point search across a polygon mesh. For obvious 
reasons, the naïve approach of iterating through every polygon 
in the model for closest point analysis would be too costly to be 
used for an interactive operation such as HoverCam. We 
therefore generate an indexing structure called a sphere-tree 
when the user loads an object. The sphere-tree is a hierarchal 
structure that encloses the polygons within our model (see 
Figure 18) and is built using a modified octree algorithm.     

 

Figure 18.  Six successive levels of a sphere-tree 
enclosing a 3D bunny model.  Notice how closely the 
sphere-tree represents the model at the low levels. 
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To compute an approximate closest point on the surface of the 
mesh, we perform a top-down traversal of our sphere-tree, 
maintaining a list of all the spheres that satisfy our FOV 
constraints.  If a sphere fails to be within either of our FOVs, we 
eliminate it from the list without exploring any of its children. In 
this manner, we eliminate a large majority of our polygons from 
the closest point analysis. As a further optimization, we also 
find the distance from the query point to the far end of each 
sphere, and eliminate all the spheres further than the current 
minimum distance.  The traversal terminates when the bottom of 
the sphere-tree is reached, and the result is a list of the smallest 
spheres from the lowest level.  The polygons contained within 
these spheres are then subjected to regular closest point analysis. 

It is often the case that some of the polygons lie on the boundary 
of our restricted FOV. For these polygons, if the true closest 
point is outside the FOV, then the closest point we are interested 
in will lie along the intersection of our FOV with the polygon.  
When this happens, we perform a ray-casting technique about 
the perimeter of the FOV, finding the closest intersection of a 
ray with the polygon. If our search method ignored these cases, 
HoverCam would mistakenly only select closest points on 
polygons completely within the FOV.  

4    Limitations 
Our HoverCam algorithm essentially handles all static 3D 
models. The model can have significant protrusions and cavities 
(convex and concave areas) and may even be interior spaces 
such as a game level. However, moving objects may not always 
be handled properly, especially if moving faster than the 
camera. Also, models with very fine protrusions around the 
camera may not be found if they fall between the two FOVs 
being used. Any of these conditions may cause HoverCam to 
move inside the object or to miss it entirely. 

Another limitation exists in the closest point search method. If a 
fast search method cannot be provided to HoverCam, interactive 
rates will suffer. For example, the automobile model in Figure 
10 has 21,000 polygons unevenly distributed in space. Due to 
the high concentration of thousands of polygons in the wheels of 
the car, gliding across the wheels noticeably slows camera 
movement, despite a fairly efficient sphere tree implementation. 

5    Initial Impressions 
We showed HoverCam to six target users who were advanced 
3D modelers and animators to get their initial impression. After 
describing the basic interaction model, we asked them to use 
HoverCam to inspect one of our 3D car models. All of them 
understood the concept and interaction mechanisms and could 
easily inspect the car. The camera orientation (including up-
model) worked exceptionally well. In addition, a few of the 
users opted to use both the HoverCam and at times the 
traditional camera controls to inspect the car. Our system 
seamlessly blended the two camera styles. Finally, one user 
commented that HoverCam is "better than shifting between 
individual modes."  

The most distracting usability issue appears to be the 
"shakiness" of the HoverCam technique as many users 
commented on the problem. This is an artifact of following 
facetted surfaces too closely. We can easily address this by 
smoothing normals or smoothing the model mesh. For future 

work, we may add level of detail support so that when 
HoverCam is further from the object, a smoother version of the 
model can be used to control the camera. In addition, two of the 
users requested the ability to get to an exactly framed spot (e.g., 
a close-up of a side mirror). The orbit distance inner limit must 
be small enough to allow for these types of close-up shots as we 
learned that our initial inner limit distance was too large. In the 
end, all of the users saw the value of HoverCam. 

6    Related Work 
A great deal of prior research has explored camera techniques 
for 3D virtual environments. Many of the techniques use 2D 
input from a mouse or stylus and introduce metaphors to assist 
the user. The most pervasive metaphor is the cinematic camera 
model, enabling users to rotate, pan and zoom the viewpoint. 
Researchers have also explored other camera metaphors 
including orbiting and flying [Tan et al. 2001], using constraints 
[Mackinlay et al. 1990; Smith et al. 2001], drawing a path 
[Igarashi et al. 1998], through-the-lens control [Gliecher and 
Witkin 1992], points and areas of interests [Jul and Furnas 
1998], two-handed techniques [Balakrishnan and Kurtenbach 
1999; Zeleznik et al. 1997], and combinations of techniques 
[Steed 1997; Zeleznik and Forsberg 1999]. Bowman et. al. 
present taxonomies and evaluations of various interactions and 
camera models [1997; 1999]. 

Systems that utilize higher degree-of-freedom input devices 
offer additional control and alternative metaphors have been 
investigated, including flying [Chapman and Ware 1992; Ware 
and Fleet 1997], eyeball-in-hand [Ware and Osborne 1990], and 
worlds in miniature [Stoakley et al. 1995]. Other techniques 
involve automatic framing of the areas of interest as typically 
found in game console based adventure games which use a 
“chase airplane” metaphor for a third person perspective. Rules 
can also be defined, for cameras to automatically frame a scene, 
that follow cinematic principles such as keeping the virtual 
actors visible in the scene; or following the lead actor [He et al. 
1996]. Researchers have also investigated so-called guided tours 
where camera paths are procedurally determined or pre-
specified for the end user to travel along. Galyean [1995] 
proposes a “river analogy” where a user, on a metaphorical boat, 
can deviate somewhat from the river, by steering using a 
conceptual “rudder”. Hanson and Wernert [1997; 1999] propose 
“virtual sidewalks” which combine virtual surfaces and specific 
gaze direction, and vistas along the sidewalk. Wan et al. 
determine a best path for automatic fly-through medical 
applications [2001]. 

The most directly related work is the UniCam [Zeleznik and 
Forsberg 1999] click-to-focus feature and the Tan et al. [2001] 
navigation system. Both of these systems are suites of camera 
manipulation tools and both have one feature that examines the 
in-scene geometry. Once the user has clicked on an object of 
interest, a camera path is generated to move and orient the 
camera toward the selected target point. The UniCam system 
animates the view to the new position while the Tan system uses 
keyboard keys to move along the generated path.  

Our technique differs from these in that an updated position and 
orientation is interactively generated so the user is continuously 
in control of the camera motion and can change directions at any 
time.  Also, the two systems mentioned do not perform collision 
detection or obstruction detection and so, may pass through 
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other polygons. Finally, HoverCam handles convex and concave 
shapes and models an up-vector field, whereas neither of the 
other systems address these aspects of navigation. 

7    Other Applications: Volumetric Operations 
In addition to surface based navigation, HoverCam can be used 
to intelligently view geometry without well-defined surfaces 
such as curves in space, point cloud data sets, or volumetric 
densities. To support navigation about lines or points, only the 
closest point search function must be changed. Figure 19 shows 
a HoverCam camera path made by a user moving around a set 
of randomly generated points (drawn as small spheres). The 
displayed camera path shows that HoverCam keeps the cloud 
data as the center of interest as the user moves around the cloud 
from right to left. 

 
Figure 19. HoverCam Navigation about a Point Cloud. 

The HoverCam algorithm can also be used to create volumetric 
densities. With an additional button, HoverCam can perform 
other operations such as selection or painting. Figure 20 shows a 
curve in space around which HoverCam can travel. When the 
user presses a modifier key, HoverCam leaves a paint trail as it 
moves about the curve. By increasing or decreasing the orbit 
distance, the user can paint closer or further from the base curve. 

 

Figure 20. Painting volumetric density with HoverCam. 

8    Conclusion 
In this paper we introduced a new technique for interactive 
object inspection called HoverCam. The fundamental principle 
is to move the camera, under a small set of constraints including 
collision detection in the hover direction and the motion 
direction, followed by a small number of corrections, to 
maintain the hover distance from the object. 

There are a number of applications of this algorithm including 
object inspection, volumetric operations, and interior navigation. 
The primary benefit to users is a simplified interaction that only 
requires 2D input, which can be engaged with just one button or 
control. Also, for object inspection, novice users can move 

around an object without moving to awkward positions or 
orientations. 
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Abstract

Through-the-Lens Camera Control

Michael Gleicher artd Andrew Witkin
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA
{gleicher lwitkin} flcs.cmu.edu

In this paper we introduce through-the-lens camera con-

trol, a body of techniques that permit a user to manipulate
a virtual camera by controlling and constraining features
in the image seen through its lens. Rather than solving
for camera parameters directly, constrained optimization
is used to compute their time derivatives based on desired

changes in user-defined controls. This effectively permits

new controls to be defined independent of the underlying

parameterization. The controls can also serve as con-
straints, maintaining their values as others are changed.
We describe the techniques in general and work through
a detailed example of a specific camera model. Our im-
plementation demonstrates a gallery of useful controls and
constraints and provides some examples of how these may
be used in composing images and animations.

Keywords: camera control, constrained optimization,

interaction techniques

1 Introduction

Camera placement and control play an important role
in image composition and computer animation. Conse-

quently, considerable effort has been devoted to the devel-
opment of computer graphics camera models. Most cam-
era formulations are built on a common unded ying model
for perspective projection under which any 3-D view is
fully specified by giving the center of projection, the view
plane, and the clipping volume. Within this framework,
camera models differ in the way the view specification is
parameterized. Not all formulations are equivalent—some
allow arbitrary viewing geometries, while others impose
restrictions. Even so, alternative models can be viewed to
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a great degree as alternative slicings of the same projective

pie.

How important is the choice of the camera model’s pa-
rametenzation? Very important, if the parameters are to
serve directly as the controls for interaction and key frame
interpolation. For example, the popular LOOKAT-

/LOOKFROM/VUPparameterizationmakes it easy to
hold a world-spacepoint centered in the image as the
camera moves without tilting. To do the same by man-

uall y controlling generic translation/rotationparameters
would be ail but hopeless in practice, although possible in
principle.

The difficulty with using camera parameters directly
as controls is that no single parameterization can be ex-
pected to serve all needs. For example, sometimes it is
more convenient to express camera orientation in terms
of azimuth, elevation and tilt, or in terms of a direction
vector. These particular alternatives are common enough

to be standardly available, but others are not. A good
example involves the problem, addressed by Jim Blinn[3]
of portraying a spacecraft flying by a planet. Blinn de-
rives several special-purpose transformations that allow
the image-space positions of the spacecraft and planet to
be specified and solves for the camera position. The need
for this kind of specialized control arises frequently, but we
would rather not face the prospect of deriving and coding
specialized transformations each time they do.

In short, camera models are inflexible. To change the

controls, one must either select a different pre-existing
model or derive and implement a new one. If this in-
flexibility could be removed, the effort devoted to camera
control could be reduced and the quality of the result en-
hanced.

In this paper, we present a body of techniques, which we
call through-the-lens camera control, that offer a general
solution to this problem. Instead of a fixed set, the user

is given a palette of interactive image-space and world-
space controls that can be applied “on the fly,” in any
combination. For example, the image-space position of
an arbitray world-space point can be controlled by inter-
active dragging, or pinned while other points are moved.
Image-space distances, sizes, and directions can also be
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controlled. Points can be constrained to remain within the
image or within a specified sub-region. These and other
image-space controls can be freely combined with direct
world-space controls on camera position and orientation.
The set of controls is extensible, with a general procedure
for adding new ones.

Using through-the-lens control, the spacecraft/phmet
problem, and others of its kind, could be solved imme-

diately and interactively: a point on the planet would be
grabbed, dragged to its target location, then left pinned at

that image point. The spacecraft would be similarly posi-
tioned and pimed. Residual degrees of freedom could be
fixed by dragging additional points, or manipulating the
camera in world space, while both image points mnained
nailed. All the while, the required camera motions would
be computed automatically at interactive speed.

The principal technical obstacle to achieving this kind of

control lies in the nonlinearity of the relationship between

the desired controls and the underlying view specification.
No general guaranteed procedure exists for solving non-
linear algebraic systems; in fact there may often exist no
solution, or many. The direct approach—solving numer-
ically for the camera parameters given the controls-is
therefore unlikely to succeed.

The key to our approach is that we instead formulate the
problem differentially-solving for the lime derivatives of
the camera parameters, given the time derivatives of the
controls. For example, a point is dragged by specifying

its velocity from moment to moment, rather than giving a
final target position. When the camera is under interactive

control, it falls to the user interface to convert user actions,
such as pointer motions, into suitable velocity signals. In
keyframe control, the velocity is calculated by takhg the
time derivative of the interpolating function. The use of

differential control does not allow us to directly position
the camera in global leaps, but instead provides a robust
and accurate means of translating continuous adjustments
of the controls into continuous motions of the camera. We
are primarily interested in interactive control by grabbing
and dragging, for which continuous motion is desirable,
and with low-level camera control for animation, for which
continuous motion is sufficient.

We formulate the problem of computing time deriva-

tives of camera parameters as a simple constrained op-
timization. Once the derivatives have been computed,
using them to update the camera’s state over time reduces
to the standard problem of solving a first-order ordinary
differential equation from an initial value, for which good
numerical methods abound (see Press et. a~. [20] for a

good practical introduction.)

An interesting feature of through-the-lens control is the

new role in which it places the camera parameterization.

Although we retain a fixed underlying camera model, the
model’s parameters no longer bear the burden of serving

as use~-level controls. In fact, the parameters maybe com-
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pletely hidden from the user. This leaves us free to choose a

camera model on the basis of numerical well-behavedness
and implementation convenience. Our preferred formula-
tion, based on quatemion rotations, is a case in point: it is
a very poor model by conventional criteria, since the four
components of the quatemion would be exceedingly diffi-
cult to control directly. Yet it provides an ideaI substrate
for through-the-lens control because it allows free came-

ra rotations without singularities or other artifacts. We

avoid the well-known difficulties involved with interpo-
lating quatemions for animation[22] by interpolating the
controls instead.

The remainder of the paper is organized as follows: Fol-
lowing a discussion of related work, we develop the ma-
chinery of through-the-lens control in terms of a generic
camera model, starting with the problem of controlling the
image-space velocity of a single point, then generalizing

to the full solution. We then present complete through-

the-lens equations for our simple quatemion-based cam-
era model. We describe our implementation and present
examples, then conclude with a discussion of future work.

2 Related Work

As we noted in Section 1, standard computer graphics cam-

era models are based on specialized transformations that
specify the view as a function of parameters that are useful
for interactive, procedural, or keyframed control. Earlier
we discussed the standard LOOKAT/LOOKFROM model.

An example of a more general viewing model currently in
wide use is the PHIGS+ model[6]. In addition, a vari-
ety of special-purpose models such as Blinn’s spacecraft
flyby transformations [3] have been developed. Issues
involved in using the LOOKAT/LOOKFROM model to
navigate virtual spaces are considered by [16]. In [7], the
LOOKAT/LOOKFROM model is embedded in a proce-

dural language for specifying camera motions.
Much of the work on interactive camera placement in

computer graphics has been concerned with direct con-
trol of the camera’s position and orientation. The prob-
lem of developing intuitive controls for 3-D rotations is

a difficult one[5], particularly when the input device is
twe-dimensional. Several researchers have addressed the
problem through the use of use of 3-D interfaces, inchtd-

ing six degree-of-freedom pointing devices[26, 25, 1] and
more specialized devices such as steerable treadmills[4].

Problems involving the recovery of camera parame-
ters from image measurements have been addressed in
photogrammetryl, computer vision, and robotics. All of

these are concerned with the recovery of parameter val-
ues, rather than time derivatives. Algebraic solutions to
specific problems of this kind are given in [18] and [9],
while numerical solutions are discussed in [15, 10, 17]. In

[24], constrained optimization is employed to position a

‘Also see chapter 6 of [21]
photogrammetry problems.

for amazing mechanical solutions to
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real camera, mounted on a robot arm, for the purpose of
object recognition. Factors considered in the optimization

include depth of field, occlusion, and image resolution.

Optimization techniques have been applied to the re-
lated problem of object placement in computer graphics.
In [1] articulated figures are posed using penalty meth-
ods to meet positional goals. In [28], similar methods are
employed for general object placement and control. The
use of these methods for camera placement in animation
is described in [30].

The differential control methods employed in this paper

are formally more closely allied to the methods of con-
strained dynamic simulation described in [29,2, 19,31,23]
than to the positional optimization methods cited above.
Some of the issues involved in adapting these methods to
differential kinematic control are addressed in [13], while
[27] considers their application to the design of free form
surfaces, and [12] illustrates their use in a constraint-based

drawing program.

3 The Machinery

In this section we introduce the basic mechanisms that
support through-the-lens control, employing a simple con-
strained optimization formulation. Assuming that we have
chosen a camera model to provide the fixed, underlying
parameterization, we solve for the time derivatives of the

parameters such that their mean squared deviation from
a desired value is minimized, subject to the constraints

imposed by the image-space controls. Setting the default
values to zero yields a solution that minimizes the mean

squared rate of change of camera parameters. Non-zero
values can be used to support interactive dragging subject
to the constraints imposed by other controls.

We begin by giving the relationship between a world-
space point and its image-space counterpart, which we
express in terms of a generic camera model. A specific
quatemion-based model will be fully described in section
4. We give the coordinates of an image point p as

p = h(Vx), (1)

where x is the world-space point that projects to p, V
is a homogeneous matrix representing the combined pro-
jection and viewing transformations, and h is a function
that converts homogeneous coordinates into 2-D image
coordinates, defined by

[1h(x)= ;,: .
,,.

where the X,’s are components of homogeneous point x.
The matrix V is some (for now unspecified) function of the

camera model parameters, which we denote by a length-n
vector q. In practice, V would usually be computed as

the product of several matrices, each a function of one or
more of the parameters.

3.1 Camera motions and image point velocities.

Assuming for now that the world space point x is fixed,

the image point p is entirely a function of the camera

parameters q. This is a nonlinear relationship because h is
nonlinear, as in general is V (q). We obtain the expression
for the image velocity p by applying the chain rule:

()8(VX) .
p = h’(Vx) —

aq “
(2)

where h’(x) is the matrix representing the derivative of

h(x), given by

q is the time derivative of q, and tl(Vx)/~q is the 4 x n
matrix representing the derivative of the transformed point
Vx with respect to q, We differentiate the point Vx rather
than the matrix V to avoid differentiating a matrix with

respect to a vector, which would give rise to a rank-3 tensor.
In section 4, we give an example of how this derivative

matrix can be computed.
For notational compactness we will define the 2 x n

matrix

a(vx)
J = h’(Vx)—

i?q ‘
(4)

so that

p = Jq. (5)

Notice that equation 5 gives p as a Iinear function of q,
even though p is a nonlinear function of q.

3.2 Controiiing a singie point

Having obtained p as a function of q, we next consider
the problem of controlling a single image point, i.e. solv-
ing for a value of q that makes the image point assume
a given velocity p = po. In practice the value for p.

might be supplied by the user interface or might indicate
the velocity on a keyframed motion path. Although the
relation between p and q is linear, we cannot simply solve
p. = Jq for q unless matrix J is square and of full rank,
which in general it will not be.

The singularity of the matrix J reflects the fact that many
distinct camera motions can cause a single point to move
in the same way. One way to solve the problem might be to
require the user to control enough points or other features
to yield a square matrix. We choose a different option

that offers far more flexibility: subject to the constraint
that p = po, we minimize the magnitude of q’s deviation

from a specified value qo. Letting qO = O imposes a
criterion of minimal change in the camera parameters. As
we shall see later, the ability to choose other values makes
it possible, for example, to drag image points and other
features subject to the hard constraints.
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The problem we now wish to solve is:

~inimize ~ = (q - 40) “(4 - 40) ,ub@ctto @ _ p, = ~
2

(6)

To qualify as a constrained minimum, q must satisfy sev-
eral conditions. First, of course, the constraint must be

met, i.e.

p. = Jq.

At an unconstrained minimum, we would require that the
gradient d13/dq vanish. Instead, we require that it point
in a dkction in which displacements are prohibhed by the
constraints. This condition is expressed by requiring that

dE/d~ = ~ – q. = JTA,

for some value of the 2-vector J of Lagrange multipliers.
This equation simply states that the gradient of E must
be a linear combination of the gradients of the constraints.
Combining the two conditions gives

JJTA = P(I – Jqo, (7)

which is a matrix equation to be solved for A. Then the
camera parameter derivatives are given by

q = q. +JTA (8)

Finally, we must use the computed value of q to update

the camera state q, a standard initial value problem. See
Press et. al. [20] for a discussion of the issues and a good
assortment of numerical methods for ordinary differential
equations. The very simplest method, Euler’s method,
employs the update formula

q(t + At) = q(t)+ Atq(t).

Although easy to implement, Euler’s method is notoriously
unstable and inaccurate. Use it at your own risk! In the
interactive loop of through-the-lens control, drawing and
input are interleaved with solver steps.

3.3 General quadratic objective functions

The restricted form of the objective function given in equa-
tion 6 is often adequate, but can cause problems: when the
controls do not fully determine the camera’s state, the task
of accounting for the remaining degrees of freedom falls to
the objective function. For example, if the camera is able
to respond to the motion of a controlled point by a com-
bination of tracking and panning, the objective function
determines how much of each will take place. Because
the error norm of equation 6 is the Euclidean distance in
the camera’s parameter space, rather than being intrinsic
to the world-space camera motion, the behavior depends

in a somewhat haphazard way on the choice of camera
parameterization, tid could even depend, for example, on
the choice of linear and angular units of measure!

To allow such behavior to be controlled in a more ratio-
nal way we make a reasonably straightforward generaliza-

tion, allowing E to be any quadratic function of q, having

334

the form

E=~qMq+b. q+c,

where M is a marnx, typically symmetric and positive-

definite, b is a vector, and c is a scalar, none of them
depending on q. Since E is quadratic, the problem remains

linear, although the matrix equation to be solved becomes

a bit more complex. The gradient of E becomes

dE

~
=Mq+b.

Denoting the inverse of M by W = M-’, equation 7
assumes the form

P(I = JWJTA – JWb. (9)

It is also possible to solve for A without obtaining the

explicit inverse for M by forming a larger linear system
(see [8].)

Under this general linear/quadratic formulation, the
camera’s response to controls can be decoupled from the
parameterization, for instance by letting M be a mass ma-

trix for the camera[l 3,29, 31].

3.4 Muitipie Points and Other Functions

Controlling more than one point involves a simple exten-

sion to the foregoing derivation. The matrix J depends on
x, so each point being controlled yields a distinct version
of equation 5. We combine the m equations into a sin-
gle one by concatenating the derivative matrices to form a

2m x n matrix, and concatenating the image velocities to
form a 2m-long vector. From that point on, the derivation
proceeds as above, to the solution of equation 7 for A,
which is now also a vector of length 2m.

In addition to controlling image points directly, we

would like to control functions of one or more points, such
as image distance or orientation. In fact, to mix image-
space and world-space controls we may want to control
other functions of q that do not involve the image at all,

such as object-to-camera distance. Conceptually, this is
not a difficult generalization to make: in equation 5, we

simply interpret p not as a literal point, but as the vector of
quantities we wish to control. Matrix J must then give the

derivative of each controlled quantity with respect to each
camera parameter. In practice, performing the derivative
evaluations, indexing and other bookkeeping, etc., can be-
come quite complex. See [14, 29] for general-purpose
schemes that facilitate the handling of this kind of matrix-
assembly problem. Although our own implementations
are based on such a scheme, the camera control problem
is sufficiently restricted in scope that this certainly is not

necessary.
Many through-the-lens controls, such as point-to-point

distance, can be expressed as fi,mctions of several image
points’ positions. The labor involved in implementing
such controls can be greatly reduced through through the
use of the chain rule. For instance, consider a scalar
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function of two image points ~( pl, p2 ). The derivative of

~ with respect to q is

d.. af dj
– —J1 + —Jz,

fi – dp, 13pj

where J I and J2 are the derivative matrices for p] and
pz, computed according to equation 4. The code that
evaluates J for image points need only be implemented
once. Thereafter, just derivatives with respect to image
points need be treated anew for each control. These tend to
be simple, and as an added advantage, they are independent

of the choice of the underlying camera parametenzation.

3.5 Constrained Dragging and Soft Controls

When controls are added dynamically by the user, it is en-
tirely possible for inconsistencies to arise, either because
the degrees of control exceed the camera’s degrees of free-
dom, or because some controls are in conflict, e.g. trying to
move one point in two directions. These problems can be
handled gracefully by employing a least-squares method

to solve the matrix equation—see for example the conju-

gate gradient solver described in [20]—s0 that the error
due to the inconsistency is distributed uniformly over the
controls, in a least-squares sense.

Although the least-squares solution avoids disaster
when conflicts arise, we have found that it is very helpful
to permit the user to drag points and other features sub-

ject to the constraints imposed by existing controls, so that
conflicts can never arise. We achieve this behavior by in-
corporating the dragged point’s desired behavior into the

objective function, rather than using a “hard” constraint to

control it. The constrained optimization solution then re-
solves any conflicts strictly in favor of the hard constraints.
Thus, for example, a point whose range of motion is re-
stricted by the controls will move freely up to the limit of
its travel, but no further. A simple way to implement such
“soft” controls is to specify the desired camera motion q.
according to the formula

qo ==k,J~(p. – p), (lo)

where k, is a constant and pC is the position of the cur-

sor in image coordinates. Using this value to drive the
system is similar to attaching a rubber band between pC
and p, inducing camera motion that causes p to “chase”

p.. Inserting this value of qo into equation 7 minimizes
the mean squared difference between q and qo, subject to
the constraints. Soft controls can be implemented more
accurately, at the expense of greater complexity, by min-
imizing the squared difference between p and a desired
value po, subject to the constraints. To express this objec-

tive function, the general form given in equation 9 must
be used.

A greatly simplified though much less powerful version
of through-the-lens control is obtained by using soft con-
trols only. Then, the constrained optimization of equation

6 collapses into an unconstrained optimization. For exam-
ple, an image point could be dragged by using equation 10

directly to determine q.

3.6 Position Feedback

So far, we have cast the problem in terms of velocity con-
trol. The velocity signals that drive the control process
may come from several sources. For example, during
interactive dragging of a controlled image point, the ve-
locity may represent an estimate of mouse velocity. In
key framing, the velocity represents the derivative of a

known trajectory curve po( t ). In both cases, position as
well as velocity information is available. This extra infor-

mation can be used to greatly improve tracking accuracy
by preventing error accumulation and drift as velocity is
integrated over time. We do this by the addition of a simple
linear feedback term to our initial statement of the control
requirement:

P = Po – kf(p – po).

where kj is a feedback constant, and p. is the desired

position for p at the current time. When p is on target,
the feedback term vanishes, but if positional error exists,
the velocity is biased in a direction that reduces the error.
The feedback term carries straight through the derivation,
leading to the following modified form for equation 7:

JJTA =Po+k, (PI) – p) –Jq”. (11)

3.7 Tracking a moving point

Until now, we have assumed that the world-space point x

is stationary. A small generalization makes it possible to
accurately track a moving point. In key frame animation,
for example, this would allow moving points on objects
to be tracked automatically. To make the generalization,
we assume that the world-space point moves according to

a known function x(t). In practice, we need only know
the point’s cument position x and velocity x. Since x now
depends on time, an additional term appears in equation 2,
the chain-rule expression for p, accounting for the part of
x’s image velocity due to the motion of x itselfi

8(VX)
p = h’(Vx) —q+h’(Vx)Vx

tiq
(12)

As before, the extra term carries through, adding an addi-
tional correction factor to the right hand side of equation
7, yielding

JJT} = p.+ kf(po – p) – h’(Vx)Vx – J~o. (13)

This formulation makes it possible to control the image-
space motion of a point independently of its world-space

motion. If the image point is pinned, the camera will move
as necessary to maintain its position. Both the image point

and the world point can be key framed independently: the
camera will move as required to achieve the desired image
motion, regardless of the world-space motion of the point.
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4 A Quaternion Camera

Having developed the through-the-lens equations in
generic form, itremains to fill inthe blanks. Intheequa-
tions of the last section, the camera transformation was
described in terms of an anonymous matrix V depending
on an anonymous parameter vector q. To proceed, we

must say what the function V(q) actually is. Then we

must formulate the equations that are required to evaluate
the image point derivative matrix J. If we limit ourselves
to image-space controls that can be expressed purely as
functions of point positions, then the matrices V and J tell
us everything we need to know about the camera.

As we noted in section 1, through-the-lens control hides
the underlying camera parametenzation from the user, so
that most of the criteria by which a conventional camera

model would be judged do not apply. The model we

present in this section is unusual in that a quatemion is used
to represent the camera’s orientation; we choose it because
of the quatemion’s ability to represent arbitrary rotations
free of singularities and other artifacts. The equations of
section 3 are compatible with any camera model. If you
prefer another one, the derivation in this section can still
serve as a template for the general procedure.

4.1 The Wew Matrix

Our model employs a translation to specify the Lookfrom
point and a quatemion to specify orientation. The view
matrix V called for by equation 1 is given by the matrix
product

V = P(f) T(tz. ty. tz)Q(gw, gz, gv+qz)t (14)

where P is a matrix for perspective projection with focal
length ~, T is the matrix for translation by [tZ, ty, tZ],

and Q is a quaternion rotation matrix, performing the
rotation specified by the quatemion q, with scalar part

q~ and vector part [q.. qv, q. ]. The camera parameter
vector q is the length-8 vector formed by concatenating the

1transformation parameters, [?, tz, tv, tZ, qw, 9Z, gut9. .
The perspective matrix is a simple one, placing the focal

point at the ongin and the image plane at distance ~ from
the origin along the z-axis, lying parallel to the q-plane:

H
10 0 0

P=::;:.

ool/fo

The translation matrix is the standard one:

[loot.

T(tz, tv,t.) =
Olotu
Ooltz

10001

The quatemion rotation matrix is a bit more complex. The

336

form given in [22],

[

~
1 _qy2 – *Z2

Q=2 9. 9V– 9Wf?z
9W9Y+ 4.92

0
(15)

assumes that the quatemion has unit magnitude, i.e. that

Otherwise, Q is not a pure rotation, and shapes will be dis-
torted. This constraint on Iql means that the camera has
only seven true degrees of freedom. To enforce the con-
straint, it is not sufficient simply to normalize Q between
iterations: in that case, the derivative matrix wouldn’t
“know” about the constraint, and the control solution
would be incorrect. While it would be possible to add

the constraint, in differential form, to the control solution,

there is a much simpler alternative: in place of equation
15, we express Q in a form that incorporates the normal-
ization, so that quatemions q and aq specify the same
transformation, for any scalar o. Under this scheme, we
must still normalize q from time to time to prevent the
accumulation of numerical errors. The modified version
of Q is most simply expressed as the product

Q.= +Q,
where

[yz -q,z -9*2 q,q,+qwllz q.qz -%9, 01

1%%–9W9Z
!#_qz2_qz2

Q=2 qwq. + qyqz o

%0% + 9.9. 9Y9Z – 9W9.
!# –q=z – 9Y2 o

0 0 0 y
I

4.2 Evaluating J

Employing the notation of section 3, the image coordinates
corresponding to world point x are given by

p = h(Vx) = h(PQnTx),

The rows of J are formed by differentiating this expression
with respect to each camera parameter in turn. To perform
the differentiations, we note that each camera parameter
influences exactly one matrix in the chain. Therefore,

using the rule for differentiation of a product, the deriva-
tive of the chain with respect to a parameter is another
chain, obtained by replacing the appropriate matrix by its
element-by-element derivative. Thus, for example,

avx—= P~Qux,at. .
and we obtain the row of J corresponding to t=from

ap— = h’(Vx)~,
a. z

where h’(Vx) is as defined in equation 2, and where

0001
0000

1

0000”
0000
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Differentiating each matrix with respect to each parameter

on which it depends yields eight matrices in all. The matrix
for dT/i)tr is given above-the other two derivatives of

T arelikewise trivial. The derivative of P with respect to

its only parameter, j, is

[1
00 0 0

dP 00 (1 o

~= 00 0 0 “
o 0 –1/f~ o

The four derivatives of Q. may be expressed compactly

as

and

To evaluate J, we need only implement functions that
calculate each of these eight derivative matrices, along
with the function that calculates h’(x). Standard ma-

trix/vector operations are then used to produce the eight
rows of J.

5 Implementation and Examples

We have implemented through-the-lens control as part of

a multi-view, direct manipulation testbed. The program is
written in C++ on a Silicon Graphics Iris workstation and

uses a toolkit which permits rapid evaluation of dynami-
cally composed functions and their derivatives 14]. All of

the examples in this paper can be specified interactively
and run at interactive rates on a Silicon Graphics IRIS
4D/210 GTX.

We have experimented with a wide variety of through-

the-lens controls including

● the position of a point on the screen,

● the distance between two points on the screen,

● the orientation of two points in the image,

● the ratio between two screen space distances.

All can be interactively specified and connected to ver-

tices in the scene, can be made into hard or soft controls,

can serve as constraints, and can be key framed. Controls

that do not have an obvious geometric method for direct
manipulation, such as the last three on the list, can be
connected to sliders.

The architecture of our system makes it easy to define
new types of controls, although this must be done at com-
pile time. Unlike finding new transforms, which entails
solving systems of non-linear equations, defining new con-
trols is easy to automate in a general and guaranteed man-

ner since the only required mathematical manipulation is

differentiation. We have built automatic code generation

tools that facilitate defining new types of controls.
By adding the ability to place boundaries on the values

of a control, we have been able to create several interesting
through-the-lens features in our system, such as

● bounding a point within a region of the image,

● ensuring that an object does not become larger or

smaller than a certain size,

● preventing an object from becoming too much bigger
or smaller than another.

We use an active set technique[ I I ] to extend the methods of
section 3 to provide the capability of inequality constraints.

These through-the-lens controls work in concert with a
variety of world-space controls. Because a camera is a first

class object in our system, these controls can be applied to
them as well as other objects in the scene. Multiple win-

dows with cameras dynamically assigned to them make
it easy to use world and image space controls together in
composing an image.

Building on top of a general purpose facility for com-
posing derivatives permits our implementation to exercise
the full generality of the methods in section 3 by allowing
us to solve simultaneously for camera and object parame-
ters. Through-the-lens controls can therefore affect other
objects in addition to the camera. Although removing the
restriction that x does not depend on q does not require any
change to the techniques presented, the pragmatic issues

that arise in including parameters of objects other than the
camera in q are beyond the scope of this paper. These
issues are discussed in [14, 13, 29]. They %rmit a uni-
fied approach to controlling and constraining all objects,
including cameras.

When the state vector includes objects besides the cam-
era, through-the-lens controls provide a way to couple the

camera and scene objects. If a point on an object is pinned
to a particular place in the image, as the object moves
the camera will also change to maintain the constraint.
Changing the camera will similarly alter the object. If
the camera is locked in place, the object is restricted to
locations where its image satisfies the through-the-lens
requirements. Adjusting a through-the-lens control can
cause both the camera and the scene objects to change,
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Figure 1: Multiple  through-the-lens  constraints:  Multiple  through-the-Lens  point controls  fixate two comers  of the center  cube.  As
the camera  is translated  along the faces of the cube (following  the arrows on the floor), it rotates  and zooms to maintain  the constraints.

Figure 2: Through-the-lens  keyframing:  Through-the-lens  controls  are moved  along keyframe  paths. Each arrow grabs a comer  of the
cube and pulls it along a path in the image.

such controls permit manipulation  of an object in terms
of how it appears  in the image. In a highly constrained
environment,  this can make it easy to achieve a desired
effect when it is unclear how to do it by controlling  the
camera and other objects independently.

As a simple  example of what through-the-lens  con-
trols can do, consider the role of the standard LOOKAT/-
LOOKFROM/VUP  camera model in our system. The
ability to place points in the image and specify the orienta-
tions of line segments subsumes the need for this camera
model. Although L/L/v is one of several  camera models
we have coded into our system2,  we typically  prefer to use
representations like the quatemion-based  one in section
4 for their well-behavedness, using through-the-lens  con-
trols to point the camera.  Even if the L/L/V representation
is employed,  the user is not restricted to specifying  the
view using these parameters.

The spacecraft example from the introduction  exempli-
fies the use of through the lens controls to compose an
image (Figure 3). Continuing  with the example,  the con-
straints used to position the spacecraft and planet can be
maintained  as the spacecraft flies past the planet to create
a fly-by animation, either by coupling the state variables
or using the tracking techniques of section 3.7. If the ge-
ometry of the scene  isn’t predetermined,  through-the-lens
control can help specify it. For example, consider creat-
ing a picture of the spacecraft flying by the planet and its
moons. If we free the position of the craft, through-the-
lens controls can move it so that its position in the image
is maintained  as we move the camera to find a view which
shows the planets and the moons in a desirable manner.

Another use of through-the-lens controls is registering
3D models with photographs.  This can be done by display-
ing a real image as a backdrop and pinning points on the
synthesized  image to their corresponding locations. Using

2Finding  the derivatives  of this matrix  is not for the faint  of heart  -
don’t try it without  a symbolic mathematics  program.
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a least squares  technique for overdetetmined  matrices can
allow several  points to be specified:  the system will move
towards the best tit (Figure 4). A viewing transform can be
derived for registering 3 points[ 181,  but through-the-lens
techniques  provide a general method for performing these
manipulations.

6 Conclusion
As we gain more experience using through-the-lens  con-
trol, we find more interesting controls and constraints to
aid in the process of composing pictures and manipulating
scenes.  Other additions to through-the-lens  manipulation
might include using optimization  and constraints to help
compose images, developing  an interface that makes it
easier to specify both through-the-lens  and world-space
controls, inferring constraints to make manipulation  eas-
ier,  and providing a method of detecting and preventing
unwanted occlusions. We are beginning to explore us-
ing through-the-lens  techniques to connect 3D models to
real photographs and live video. We are also considering
how to use through-the-lens  techniques to address issues
in planning good camera motions for animations.

Through-the-lens  techniques provide a method for ma-
nipulating the virtual camera by controlling and constrain-
ing image attributes. Interactive control techniques permit
the user to control the virtual camera by directly manip-
ulating the image as seen through the lens. The control
techniques make it easy to enforce constraints on attributes
of the image and scene.  The techniques make it simple to
implement a wide variety of constraints and controls.
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