
  

Computational Geometry 
Algorithms Library

Pierre Alliez
INRIA

   

Andreas Fabri
GeometryFactory

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1665817.1665821&domain=pdf&date_stamp=2009-12-16


  

http://www.cgal.org/siggraph2009

The updated handout has 

• extensive comments in the “Notes” part of Powerpoint.

• hyperlinks to the CGAL User and Reference Manual 
(~3500 pages).

• hyperlinks to precompiled demos illustrating the 
algorithms. They will be made available online.



  

Course Outline

• General Introduction
• CGAL for 2D Vector Graphics
• CGAL for Point Sets
• CGAL for Modeling and Processing of 

Polyhedral Surfaces 
• CGAL for Mesh Generation
• Questions and Answers



  

Mission Statement

  “Make the large body of geometric 
algorithms developed in the field of 
computational geometry available for 
industrial applications”

CGAL Project Proposal, 1996



  

Algorithms and Datastructures



  

CGAL in Numbers

500,000
  10,000
    3,500
    3,000
    1,000
       120
       90
         20
         12
          2

lines of C++ code
downloads/year (+ Linux distributions)
manual pages
subscribers to cgal-announce
subscribers to cgal-discuss
packages
commercial users
active developers
months release cycle
licenses: Open Source and commercial



  

Some Commercial Users

Geophysics
(Oil&Gas)

CAD/CAM

Image
Processing

Telecom

Medical

GIS

Digital maps

Scientific
visualization

VLSI



  

“ I recommended to the senior management that we start a 
policy of buying-in as much functionality as possible to 
reduce the quantity of code that our development team 
would have to maintain.  

This means that we can concentrate on the application 
layer and concentrate on our own problem domain.”

Why They Use CGAL

Senior Development Engineer
& Structural Geologist

Midland Valley Exploration



  

“ My research group JYAMITI at the Ohio State University uses CGAL 
because it provides an efficient and robust code for Delaunay 
triangulations and other primitive geometric predicates. Delaunay 
triangulation is the building block for many of the shape related 
computations that we do.  [...]

Without the robust and efficient codes of CGAL, these codes could 
not have been developed. ”

Why They Use CGAL

Tamal Dey
Professor, Ohio State University



  

CGAL Open Source Project 



  

Project = « Planned Undertaking » 

• Institutional members make a long term commitment: 
Inria, MPI, Tel-Aviv U, Utrecht U, Groningen U,
ETHZ, GeometryFactory, FU Berlin, Forth, U Athens 

• Editorial Board 

– Steers and animates the project 

– Reviews submissions

• Development Infrastructure 

– Gforge: svn, tracker, nightly testsuite,... 

– 120p developer manual and mailing list  

– Two 1-week developer meetings per year



  

Contributions

• Submission of specifications of new 
contributions

• Review and decision by the Editorial Board 

• Value for contributor

– Integration in the CGAL community
– Gain visibility in a mature project
– Publication value for accepted 

contributions



  

 
Exact Geometric Computing 



  

Predicates and Constructions

       Predicates                                 Constructions

orientation              in_circle                     intersection          circumcenter



  

Robustness Issues

• Naive use of floating-point arithmetic causes 
geometric algorithms to:
– Produce [slightly] wrong output
– Crash after invariant violation
– Infinite loop

• There is a gap between 
–  Geometry in theory
–  Geometry with floating-point arithmetic



  

Geometry in Theory

ccw(s,q,r) & ccw(p,s,r) & ccw(p,q,s) ⇒ ccw(p,q,r)

Correctness proofs of algorithms rely on such 
theorems



  

Demo: The Trouble with Double
     orientation(p,q,r) = sign((px-rx)(qy-ry)-(py-ry)(qx-rx))

negative zero positive



  

Exact Geometric Computing  [Yap] 

Make sure that the control flow in the 
implementation corresponds to the control 
flow with exact real arithmetic

<0 >0

=0

orientation(p,q,r)



  

Filtered Predicates

• Generic functor adaptor Filtered_predicate<>
– Try the predicate instantiated with intervals

– In case of uncertainty, evaluate the predicate 
with multiple precision arithmetic

• Refinements:
– Static error analysis

– Progressively increase precision



  

Filtered Constructions

[]

+
*

[]

3.2 1.5

13

if (collinear(a',m',b'))if ( n' < m' )

midpoint

intersect projection

([], [])

([], [])([], []) ([], [])

bs1 s2 l

m'

i' p'

p

a

s1

s2

l

m
i

b

n'

Lazy number = interval and arithmetic 
                       expression tree

Lazy object = approximated object and 
                     geometric operation tree

Test that may trigger an exact re-evaluation:

(3.2 + 1.5) * 13



The User Perspective

• Convenience Kernels
– Exact_predicates_inexact_constructions_kernel
– Exact_predicates_exact_constructions_kernel
– Exact_predicates_exact_constructions_kernel_with_sqrt

• Number Types
– double, float
– CGAL::Gmpq (rational), Core (algebraic)
– CGAL::Lazy_exact_nt<ExactNT> 

• Kernels
– CGAL::Cartesian<NT>
– CGAL::Filtered_kernel<Kernel>
–  CGAL::Lazy_kernel<NT>

CGAL manualCGAL manual

http://www.cgal.org/Pkg/Kernel23


  

Merits and Limitations

• Ultimate robustness inside the black box

• The time penalty is reasonable,  e.g. 10% for 
3D Delauny triangulation of 1M random points

• Limitations of Exact Geometric Computing
– Topology preserving rounding is non-trivial

– Construction depth must be reasonable

– Cannot handle trigonometric functions 



  

        
Generic Programming



  

 

STL Genericity

STL manualSTL manual

template <class Key, class Less>
class set {
  Less less;

  insert(Key k)
  {
     if (less(k, treenode.key))
       insertLeft(k);
     else
       insertRight(k);
  }
};

http://www.sgi.com/tech/stl/


  

CGAL Genericity
template < class Geometry >
class Delaunay_triangulation_2 {
    Geometry::Orientation orientation;
    Geometry::In_circle in_circle;

    void insert(Geometry::Point t) {
       ...
       if(in_circle(p,q,r,t)) {...}
       ...
       if(orientation(p,q,r){...}
    }
};



  
Courtesy: IPF,Vienna University 
of Technology & Inpho GmbH 

CGAL Genericity Demo

Without explicit conversion to points in the plane
• Triangulate the terrain in an xy-plane
• Triangulate the faces of a Polyhedron



  

Boost Graph Library (BGL) 

• Rich collection of graph algorithms:
shortest paths, minimum spanning tree, flow, etc.

• Design that 
– decouples data structure from algorithm
– links them through a thin glue layer

• BGL and CGAL
– Provide glue layer for CGAL
– Extension to embedded graphs 

inducing the notion of faces
BGL manualBGL manual

http://www.boost.org/libs/graph/doc/table_of_contents.html


  

BGL Glue Layer: Traits Class 

template <typename Graph >
struct boost::graph_traits {
    typedef ... vertex_descriptor;
    typedef ... edge_descriptor;
    typedef ... vertex_iterator;
    typedef ... out_edge_iterator;
};



  

vertex_descriptor v, w;
edge_descriptor e;

v = source(e,G);
w = target(e,G);

std::pair<out_edge_iterator, out_edge_iterator> ipair;

ipair = out_edges(v,G);

BGL Glue Layer: Free Functions

G

v

e

w



  

BGL Glue Layer for CGAL

Users can run:
boost::kruskal_mst(P);

template <typename T>
graph_traits<Polyhedron<T>>;

template <typename T>
Polyhedron<T>::Vertex
source(Polyhedron<T>::Edge);

CGAL provides partial specializations:

Courtesy: P.Schroeder, Caltech



  

From A BGL Glue Layer for CGAL

<<Concept>>
Graph 

CGAL::HDS

BGL::Algorithm

boost::adjacency_list



  

To BGL Style CGAL Algorithms

<<Concept>>
Graph 

<<Concept>>
EmbeddedGraph 

User::PolyhedronCGAL::HDS

BGL::Algorithm CGAL::Algorithm

boost::adjacency_list



  

Demo CGAL + OpenMesh

<<Concept>>
EmbeddedGraph 

OpenMesh::PolyhedronCGAL::HDS

CGAL::Turk_Lindstrom_surface_simplification



  

Summary: Overview 

• Open Source project

• Clear focus on geometry
• Interfaces with de facto standards/leaders: 

STL, Boost, GMP, Qt, blas

• Robust and fast through exact geometric 
computing  

• Easy to integrate through generic programming



  

CGAL for 2D 
Vector
Graphics

Andreas Fabri
GeometryFactory

   



  

Union           Intersection                          Complement

CGAL Boolean Operations can deal explicitly with

Circular arcs       Bézier Curves     Line Segments

Boolean Operations



  

Boolean Ops on Circular Arcs Demo

Zoom in

dxf file of a printed circuit board with circular arcs



  

True Type fonts are Bézier curves

Boolean Ops on Bézier Curves



  

Background: 2D Arrangement
Given a collection of curves on a surface, the 
arrangement  is the partition of the surface into 
vertices, edges and faces induced by the curves

An arrangement of 
lines in the plane

An arrangement
of circles in the
plane

An arrangement
of geodesic arcs
on the sphere



  

Arrangement_2<Geometry>
• Constructs, maintains, modifies, traverses, queries, and presents 

subdivisions of the plane
• Robust and exact

– All inputs are handled correctly (including degenerate)
– Exact number types are used to achieve exact results

• Efficient
• Generic

– Easy to interface, extend, and adapt
– Notification mechanism for change propagation

• Modular
– Geometric and topological aspects are separated



  

• Based on Minkowski 
sums, with segments and 
circular arcs.

• Based on straight 
skeleton, with segments 
only.

 Polygon Offsets



  

Polygon Triangulation Demo

Kilimandjaro 
elevation contour 

lines (38K segments)



  

Polygon Mesh Generation Demo



  

Simultaneous Polyline Simplification

Courtesy: Laminar Research

Red points were 
removed



  

Simultaneous Polyline Simplification

Courtesy: Laminar Research

Input is the 
transportation and 
water layers of 
OpenStreetMap

Red points were 
removed



  

Simultaneous Polyline Simplification

• Implementation of [Dyken et al] 
• Based on CGAL::Constrained_delaunay_2
• Guarantees that after simplification

– islands stay islands 
– isolines do not intersect



  

Vector Graphics on the Sphere

• Arrangement_2<Geometry, Embedding>

• Boolean operations
• Map overlay
• Voronoi diagram
• Point location
• Convex decomposition



  

Summary: CGAL for Vector Graphics

• Rich collection of 2D geometric algorithms
• Modular and generic design
• Linear and curved primitives
• Useful in many application domains



  

   

CGAL for 
Point Sets

Pierre Alliez
INRIA



  

Analysis Processing Normals Reconstruction Contouring

Centroid

Average Spacing

Bounding volumes

 Surface mesh 
generator

Poisson Estimation

 Orientation

 Simplification

 Outlier removal

 Smoothing

point set

implicit
function

surface
triangle mesh

Surface Reconstruction Pipeline



  

Bounding Volumes

• Convex hull

• Bounding sphere



Principal Component Analysis

Linear least squares 
fitting on sets of 3D 
points 

CGAL manualCGAL manual

http://www.cgal.org/Pkg/PrincipalComponentAnalysisD


  

Outlier Removal

• Sort w.r.t. sum of squared distances to k-nearest 
neighbors (CGAL::K_nearest_neighbor_search) and 
cut at specified percentile.



  

• Estimates general 
differential properties 
(Monge form) on point 
sets.

• Through polynomial 
(d-jet) fitting 

CGAL manualCGAL manual

min curvature directions

max curvature directions

Estimation of Curvatures

http://www.cgal.org/Pkg/Jet_fitting_3


  

(noisy point set) (smoothed point set)

Point Cloud Smoothing

• For each point
–  Find k-nearest neighbors 
–  fit jet (smooth parametric surface)
–  project onto jet



  

Surface Reconstruction

Poisson Surface Reconstruction  
[Kazhdan-Bolitho-Hoppe, SGP 2006]

• Solves for an implicit function 
(~indicator function)

• Isosurface extracted by 
CGAL::Surface_mesher 



  

3D Triangulations 

• Delaunay

• Fully dynamic  

• 1M 3D points in 16 sec



  

Surface Reconstruction Demo 

• Solves for the Poisson equation onto the 
vertices of a (refined) 3D Delaunay 
triangulation.



  

Summary: CGAL for Point Sets

• Algorithms are modular components
• in this course: positioned along the surface 

reconstruction pipeline.
• can be used individually

• Poisson reconstruction is the first 
algorithm of the surface reconstruction 
package.



  

CGAL for 
Modeling and 
Processing of 
Polyhedral 
Surfaces

Andreas Fabri
GeometryFactory

   



  

Outline

• Polyhedral Surface
– Halfedge data structure
– Euler Operators
– Customization

• Algorithms for Geometric Modelling 
and Geometry Processing



  
CGAL manualCGAL manual

Halfedge Data Structure

Represented by vertices, edges, facets and an incidence 
relation on them,  restricted to orientable 2-manifolds with 
boundary. 

http://www.cgal.org/Pkg/HDS


Polyhedron

Building blocks assembled with C++ templates



Default Polyhedron

CGAL manualCGAL manual

http://www.cgal.org/Pkg/Polyhedron


Flexible Data Structure



  CGAL manualCGAL manual

split_facet
join_facet

split_vertex
join_vertex 

(aka edge collapse)

create_center_vertex
erase_center_vertex

split_loop
join_loop

add_facet_to_border
erase_facet

add_vertex_and_facet
_to_border
erase_facet

Euler Operators

http://www.cgal.org/Manual/3.3/doc_html/cgal_manual/Polyhedron_ref/Class_Polyhedron_3.html%23sectionPolyhedronEuler


  

Algorithms



  

Algorithms

• Intersection detection

• AABB Tree

• Bounding volumes
• Boolean operations
• Kernel
• Parameterization
• Subdivision
• Principal component analysis
• Extraction of ridges
• Simplification



  

• Efficient algorithm for 
finding all intersecting 
pairs for large numbers 
of axis-aligned bounding 
boxes.

• Generic programming: 
Boxes can contain 
objects of any type

CGAL manualCGAL manual

Intersection Detection

http://www.cgal.org/Pkg/BoxIntersectionD


  

AABB Tree

Efficient algorithms for 
intersection detection 
and distance 
computation



  

Bounding Volumes

• Convex hull
• Bounding sphere

• Bounding sphere
of spheres



  

n1 -= n2; // difference
3D Boolean Operations



  

• The Gaussian map of a polytope is the decomposition of S2 into 
maximal connected regions so that the extremal point is the 
same for all directions within one region

• The overlay of the Gaussian maps of two polytopes P and Q is 
the Gaussian map of the Minkowski sum of P and Q

Minkowski-Sums of Polytopes



  

• Intersection of all its interior half-spaces
• Uses linear programming: CGAL::QP_solver

input polyhedron kernel

Kernel of a Polyhedron



  
Fixed 
boundary

Free 
boundary

Parameterization

• Planar
• Conformal [Eck et al., Levy et al., Desbrun et al.]
• Mean value coordinates [Floater]
• ...



  

Subdivision

• Designed to work on CGAL polyhedron
• Catmull-Clark
• Loop
• Doo-Sabin
• Sqrt3 
• …



  

• Linear least squares 
fitting on sets of 3D 
points or triangles

CGAL manualCGAL manual

fit pointsfit points

fit trianglesfit triangles

Principal Component Analysis

http://www.cgal.org/Pkg/PrincipalComponentAnalysisD


  

• Ridge: curve along 
which one of the 
principal curvatures 
has an extremum 
along its curvature 
line.

CGAL manualCGAL manual

Extraction of Ridges

http://www.cgal.org/Pkg/Ridges_3


  

• Implementation of 
[Lindstrom-Turk] volume-
preserving method.

Simplification



  

Summary: CGAL for Modeling and 
                Polyhedral Surfaces 

• The halfedge data structure and the 
polyhedron are highly flexible 

• CGAL provides many algorithms for 
geometric modeling and geometry 
processing

• Polyhedral surface as output of surface mesh 
generation algorithms



  

CGAL for  
Mesh 
Generation

Pierre Alliez
INRIA



  

Outline

• 2D mesh generation
• Surface mesh generation
• 3D mesh generation
• Work in progress



  

2D Mesh Generation



  

2D Mesh Generation

From Triangulations to Quality Meshes



  

Delaunay Triangulation

• A triangulation is a Delaunay triangulation, if the 
circumscribing circle of any facet of the 
triangulation contains no vertex in its interior 

DemoDemo

http://www.cgal.org/Pkg/Polyhedron


  

Constrained Delaunay Triangulation



  

Constrained Delaunay

Kilimandjaro 
elevation contour 

lines (38K segments)

Online demoOnline demo

http://www.cgal.org/Courses/Siggraph2008/Mesh_2/index.html


  

Adding Constraints

CGAL manualCGAL manual

http://www.cgal.org/Pkg/Triangulation2


  

Conforming a Triangulation 

CGAL manualCGAL manual

http://www.cgal.org/Pkg/Mesh2


  

Delaunay Refinement



  

Conforming a Triangulation

Any constrained Delaunay triangulation can be refined into a 
conforming Delaunay or Gabriel triangulation by adding Steiner 
vertices.

non conforming Delaunay conforming Gabriel conforming



  

Delaunay Refinement Rules

Rule #1: break bad elements by inserting circumcenters (Voronoi 
vertices)
– “bad” in terms of size or shape (too big or skinny)

Picture taken from [Shewchuk]



  

Delaunay Refinement Rules

Rule #2: Midpoint vertex insertion
A constrained segment is said to be encroached, if there is a vertex 

inside its diametral circle

Picture taken from [Shewchuk]



  

Delaunay Refinement Rules

Encroached subsegments have priority over skinny 
triangles

Picture taken from [Shewchuk]



  

Parameters for Delaunay Refinement

• Shape
– Lower bound on triangle angles

Input PLSG 5 deg 20.7 deg

Online manualOnline manual

http://www.cgal.org/Pkg/Mesh2


  

Parameters for Delaunay Refinement

• Shape
– Lower bound on triangle angles

• Size
– No constraint
– Uniform sizing
– Sizing function



  

Sizing Parameter

No constraint Uniform Sizing function



  

Parameters for Delaunay Refinement

• Shape
– Lower bound on triangle angles

• Size
– No constraint
– Uniform sizing
– Sizing function

• Seeds
– Exclude/include components



  

Performances

Refinement: 15K vertices/s

Online demoOnline demo

http://www.cgal.org/Courses/Siggraph2008/Mesh_2/index.html


  

Surface Mesh Generation



  

input

Surface Mesh Generation



  

3D Triangulations

• Delaunay
• Regular
• Rich API
• Fully dynamic
• 1M points in 16s

Online manualOnline manual

http://www.cgal.org/Pkg/Triangulation3


  

Mesh Generation

Key concepts:
• Delaunay filtering
• Delaunay refinement



  

Delaunay Filtering
Dual Voronoi edge

Delaunay 
triangulation 
restricted to 

surface Sfacet

Voronoi edge ∩ surface S



  

Delaunay Refinement

Steiner point

Bad facet =  big or
                   badly shaped or
                   large approximation error



  

Delaunay Refinement

repeat
{

pick bad facet f
insert furthest (dual(f) ∩ S) in Delaunay triangulation
update Delaunay triangulation restricted to S
}
until all facets are good



  

Output Mesh

Triangle surface mesh 
approximating isosurface of 
input 3D image

input



  Online manualOnline manual

Output Mesh
• Well shaped triangles

– Lower bound on triangle angles

• Homeomorphic to input surface
• Manifold  

– not only combinatorially, i.e., no self-intersection

• Faithful Approximation of input surface
– Hausdorff distance 
– Normals

http://www.cgal.org/Pkg/SurfaceMesher3


  

Delaunay refinement Marching cubes in octree

vs Marching Cubes



  

Surface Remeshing (input is a 
polyhedral surface)

(requires efficient 
data structures 
for intersection 
computations)



  

Parameters

• Shape of triangles
– lower bound on triangle angles

• Size
– No constraint
– Uniform sizing
– Sizing function



  

Parameters

• Shape of triangles
– lower bound on triangle angles

• Size
– No constraint
– Uniform sizing
– Sizing function

• Approximation error



  

Uniform vs Adapted



  

Mesh Generation Framework

Refinement

while(simplex is bad)
refine(simplex)

ConstraintsOracle

Size 

Shape

Approximation

3D image

Surface mesh

Implicit function

… …



  

A Versatile Framework

• 3D grey level images 
• 3D multi-domain images
• Implicit function: f(x, y, z) = constant
• Surface mesh (remeshing)
• Point set (surface reconstruction)
• Anything which provides intersections



  

3D Mesh Generation



  

3D (Volume) Mesh Generation



  

More Delaunay Filtering
Delaunay 

triangulation 
restricted to 

domain Ω

Dual Voronoi vertex 
inside domain Ω 

(“oracle”)

tetrahedron

circumsphere



  

Delaunay Refinement
Steiner point

Bad tetrahedron = big or badly shaped



  

Volume Mesh Generation Algorithm

repeat
{
pick bad simplex
if(Steiner point encroaches a facet)

refine facet
else

refine simplex
update Delaunay triangulation restricted to domain
}
until all simplices are good
Exude slivers



  

Tetrahedron Zoo

sliver



  

Sliver Exudation [Edelsbrunner-Guoy]

• Delaunay triangulation turned into a regular 
triangulation with null weights.

• Small increase of weights triggers edge-facets 
flips to remove slivers.



  

Sliver Exudation Process

• Try improving all tetrahedra with an aspect 
ratio lower than a given bound

• Never flips a boundary facet

distribution of aspect ratios



  

Visible human 

Multi-Domain Volume Mesh



  

Multi-Domain Volume Mesh



  

Work in Progress



  

Piecewise Smooth Surfaces



  

Input: Piecewise smooth complex

crease

corner



  

Even More Delaunay Filtering
primitive dual of test against
Voronoi vertex tetrahedron inside domain
Voronoi edge facet intersect domain boundary
Voronoi face edge intersect crease



  

Delaunay Refinement

• Steiner points



  

Summary: CGAL for Mesh Generation

• 2D mesh generation
– From triangulation to quality mesh
– Preserves constraints exactly

• 3D Mesh generation
– Interpolates boundary
– Versatile through oracle-based design



  

Questions and 
Answers   

Andreas Fabri
GeometryFactory

Pierre Alliez
INRIA



  

Question and Answers

• General Introduction
• CGAL for 2D Vector Graphics
• CGAL for Point Sets
• CGAL for Modeling and Processing of 

Polyhedral Surfaces 
• CGAL for Mesh Generation


