

THE PREMIER CONFERENCE

EXHIBITION ON

COMPUTER GRAPHICS &

NTERACTIVE TECHNIQUES

(Tiny) Problems with Web Scraping the ACM Digital Library

SIGGRAPH 2024 Village: History: The ACM SIGGRAPH History Archive—Moving Forward by Looking Backwards

Manuel Alducin

Information Technology Professional

Global Affairs Canada

At the Embassy of Canada to Mexico

Web Scraping

Download

Extract Info

Two Steps

- Get basic info from Publication page
- Get Abstract and (rebuild) References from detail page

Write Excel

Write File

 Except no buffering, write until the end!

Save some time

- Download the Publication pages
- Use filename for some configuration

Setup

- Ubuntu 22
- Python 3.10 (tried 3.11 for TOML via deadsnakes)
- Main libraries
 - BeautifulSoup: parse the HTML
 - XIsxWriter: directly write Excel file
 - o requests: get detail page
- Script about 150 lines of code
- No logging (only print to screen)
- Configuration inside the script
- Script more or less worked within 2 weeks
- No Git! (what was I thinking!)

The Main Problem

Time

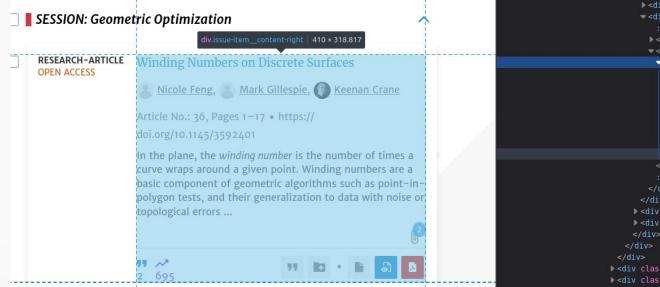
The Main Problem: Time

Late Involvement

- Learned of History Project at Vancouver 2022
- Got in touch around December 2022

Web Scraping

- Can still require manual cleanup
- May require lots of tweaking
- Hadn't done scraping in a while


Analyse the Problem

- Little time to really analyze the DL in-depth
- But the DL seems pretty clean, right?

Scraping the DL

SIGGRAPH 2023 TOG


```
▶ <div class="issue-item-checkbox-container"> - </div>
      ▼ <div class="issue-item clearfix">
         ::before
       ▶ <div class="issue-item citation"> -</div>
       ▼<div class="issue-item content">
         ▼<div class="issue-item content-right">

▼<h5 class="issue-item title">
             <a href="/doi/10.1145/3592401">Winding Numbers o
          >
          ▶ <div class="issue-item detail"> ···· </div>
          ▶ <div class="issue-item abstract truncate-text tru</p>
          ▶ <div class="issue-item footer clearfix"> • </div>
    ▶ <div class="issue-item-container"> ••• </div>
    > <div class="issue-item-container"> -- </div>
▶ <div class="toc section accordion-tabbed tab"> -</div>
```

The Final Output

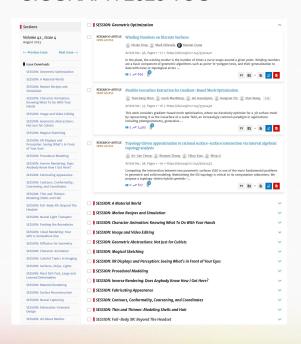
SIGGRAPH 2023 Papers

learning_title learning_conferencerel_learning_ty rel:conference_shor/tax:learning_ty		cerel_learning_type	learning_abstract	learning_link_to_dl	learning_references	Presenters
		or tax:learning_type				
Winding Numbers on Discrete Surfaces	SIGGRAPH 2023	Technical Papers	In the plane, the winding number is the nu	imber of times a curve https://doi.org/10.1145/3592401	65. Qingnan Zhou, Eitan Grinspun, Denis Zorin, an	
Flexible Isosurface Extraction for Gradient-Based Mesh Optimizat	SIGGRAPH 2023	Technical Papers	This work considers gradient-based mesh	optimization, where we https://doi.org/10.1145/3592430	74. Chenyang Zhu, Kai Xu, Siddhartha Chaudhuri, Renjiao Yi, and Hao Zhane Jun Gao	
pology driven approximation to rational surface-surface interse SIGGRAPH 2023 Technical Papers		Computing the intersection between two	parametric surfaces (59 https://doi.org/10.1145/3592452	63. Y Yamaguchi, R Kamiyama, and F Kimura, 2001. Surface-Surface Interse Ming Li		
A Practical Wave Optics Reflection Model for Hair and Fur	SIGGRAPH 2023	Technical Papers	Traditional fiber scattering models, based	on ray optics, are miss https://doi.org/10.1145/3592446	57. Arno Zinke, Martin Rump, Tomás Lay, Andreas	Weber, Anton Andriyenko Steve Marschner
Anatomically Detailed Simulation of Human Torso	SIGGRAPH 2023	Technical Papers	Many existing digital human models appro	eximate the human ske https://doi.org/10.1145/3592425	59. Jānis Šavlovskis and Kristaps Raits, [n. d.]. Bio	mechanics of the Spine. h.C. Karen Liu
HACK: Learning a Parametric Head and Neck Model for High-fide	SIGGRAPH 2023	Technical Papers	Significant advancements have been mad	e in developing parame https://doi.org/10.1145/3592093	115. Yiyu Zhuang, Hao Zhu, Xusen Sun, and Xun G	ao. 2022. Mofanerf: Morp Jingyi Yu
GestureDiffuCLIP: Gesture Diffusion Model with CLIP Latents	SIGGRAPH 2023	Technical Papers	The automatic generation of stylized co-sp	peech gestures has recentus://doi.org/10.1145/3592097	88. Yi Zhou, Connelly Barnes, Jingwan Lu, Jimei Ya	ng, and Hao Li. 2019. On Libin Liu
BodyFormer: Semantics-guided 3D Body Gesture Synthesis with	SIGGRAPH 2023	Technical Papers	Automatic gesture synthesis from speech	is a topic that has attra https://doi.org/10.1145/3592456	51. Yukun Zhu, Ryan Kiros, Richard S. Zemel, Rus	lan Salakhutdinov, Raquel Taku Komura
Listen, Denoise, Action! Audio-Driven Motion Synthesis with Diffue	SIGGRAPH 2023	Technical Papers	Diffusion models have experienced a surg	e of interest as highly ehttps://doi.org/10.1145/3592458	133. Vikram Voleti, Alexia Jolicoeur-Martineau, and	Christopher Pal. 2022. M Gustav Eje Henter
Contact Edit: Artist Tools for Intuitive Modeling of Hand-Object In	SIGGRAPH 2023	Technical Papers	Posing high-contact interactions is challen	ging and time-consumi https://doi.org/10.1145/3592117	43. W. Zhao, J. Zhang, J. Min, and J. Chai, 2013. R	bust Realtime Physics-Ba Nancy Pollard
Eventfulness for Interactive Video Alignment	SIGGRAPH 2023	Technical Papers	Humans are remarkably sensitive to the a	lignment of visual ever https://doi.org/10.1145/3592118	50. Oliver Wang, Christopher Schroers, Henning Z	mmer, Markus Gross, and Abe Davis
FactorMatte: Redefining Video Matting for Re-Composition Tasks	SIGGRAPH 2023	Technical Papers	We propose Factor Matting, an alternative	formulation of the vide https://doi.org/10.1145/3592423	46. Yunke Zhang, Chi Wang, Miaomiao Cui, Peirar	Ren, Xuansong Xie, Xian Abe Davis
Computational Long Exposure Mobile Photography	SIGGRAPH 2023	Technical Papers	Long exposure photography produces stur	ning imagery, represe https://doi.org/10.1145/3592124	46. Timo Zinßer, Jochen Schmidt, and Heinrich Nie	mann, 2005. Point set reg Yael Pritch
ShapeCoder: Discovering Abstractions for Visual Programs from U	SIGGRAPH 2023	Technical Papers	We introduce ShapeCoder, the first system	n capable of taking a da https://doi.org/10.1145/3592416	57. Fenggen Yu, Zhiqin Chen, Manyi Li, Aditya Sar	nghi, Hooman Shayani, Ali Daniel Ritchie
The Visual Language of Fabrics	SIGGRAPH 2023	Technical Papers	We introduce text2fabric, a novel dataset	that links free-text des https://doi.org/10.1145/3592391	70. Xilong Zhou, Milos Hasan, Valentin Deschaintr	e, Paul Guerrero, Kalyan 9 Belen Masia
ArrangementNet: Learning Scene Arrangements for Vectorized In	SIGGRAPH 2023	Technical Papers	We present a novel vectorized indoor mod	leling approach that co https://doi.org/10.1145/3592122	85. Chuhang Zou, Ersin Yumer, Jimei Yang, Duygu	Ceylan, and Derek Hojem Li Yi
Juxtaform: interactive visual summarization for exploratory shape	SIGGRAPH 2023	Technical Papers	We present juxtaform, a novel approach to	o the interactive summ https://doi.org/10.1145/3592436	70. Jun-Yan Zhu, Yong Jae Lee, and Alexei A Efros.	2014. Averageexplorer: In Karan Singh
Patternshop: Editing Point Patterns by Image Manipulation	SIGGRAPH 2023	Technical Papers	Point patterns are characterized by their d	ensity and correlation. https://doi.org/10.1145/3592418	93. Yang Zhou, Zhen Zhu, Xiang Bai, Dani Lisching	
VideoDoodles: Hand-Drawn Animations on Videos with Scene-Aw	SIGGRAPH 2023	Technical Papers	We present an interactive system to ease	the creation of so-calle https://doi.org/10.1145/3592413	 Zhoutong Zhang, Forrester Cole, Richard Tuck 	er, William T Freeman, an Adrien Bousseau
StripMaker: Perception-driven Learned Vector Sketch Consolidation	SIGGRAPH 2023	Technical Papers	Artist sketches often use multiple overdrag	wn strokes to depict a https://doi.org/10.1145/3592130	62. Jerry Yin, Chenxi Liu, Rebecca Lin, Nicholas Vi	
Semi-supervised reference-based sketch extraction using a contr	SIGGRAPH 2023	Technical Papers	Sketches reflect the drawing style of indiv	idual artists; therefor https://doi.org/10.1145/3592392	79. Changging Zou, Haoran Mo, Chengying Gao, F	
Split-Lohmann Multifocal Displays	SIGGRAPH 2023	Technical Papers	This work provides the design of a multiform	cal display that can cre https://doi.org/10.1145/3592110	42. Tao Zhan, Jianghao Xiong, Junyu Zou, and Shir	-Tson Wu. 2020. Multifoca Aswin C. Sankaranarayar
Étendue Expansion in Holographic Near Eye Displays through Spa	SIGGRAPH 2023	Technical Papers	In this paper, we present a novel method	the étendue expansion https://doi.org/10.1145/3592441	33. Wei Yuan, Li-Hua Li, Wing-Bun Lee, and Chang	-Yuen Chan. 2018. Fabrica Yoonchan Jeong
Rhizomorph: The Coordinated Function of Shoots and Roots	SIGGRAPH 2023	Technical Papers	Computer graphics has dedicated a consid	derable amount of effor https://doi.org/10.1145/3592145	78. Y. Zhao and J. Barbič. 2013. Interactive Author	ing of Simulation-ready PI Wojtek Pałubicki

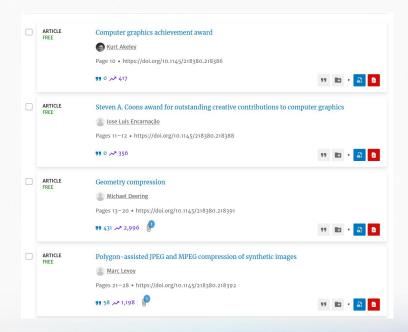
Challenges

Discrepancies in the DL

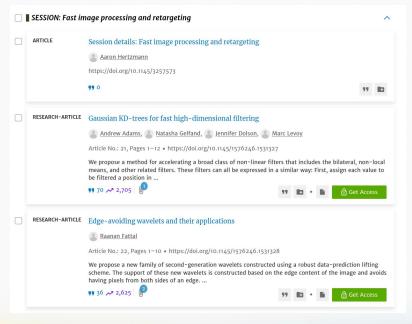
Challenges: Discrepancies in the DL



- DL is rate limited: find out how low you can go
- Updates to the DL System
- CSS specificity
- Differences between TOG and older Proceedings
- Older Proceedings might include info from several types of Sessions: Panels, Sketches, etc.


Challenges: Discrepancies in the DL

SIGGRAPH 2023 TOG


SIGGRAPH 1995 Proceedings

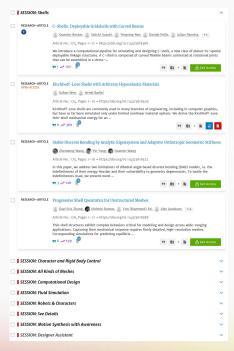
Challenges: Discrepancies in the DL

SIGGRAPH 2009 Papers

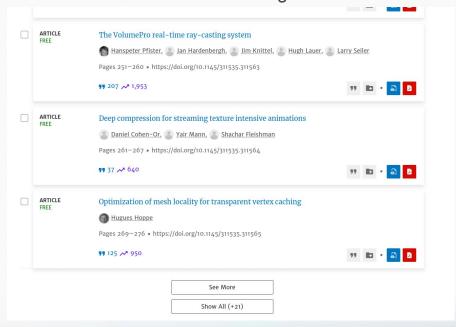
Challenges

Dynamic Content

Challenges: Dynamic Content



- Used for large lists of Articles and for large number of authors
- Also different between older and newer content
- Two options: try to automate or take care manually
- Automate: use Selenium?
- Manually: just click away


Challenges: Dynamic Content

SIGGRAPH Asia 2023

SIGGRAPH 1999 Proceedings

Challenges: Dynamic Content

SIGGRAPH Asia 2023

Challenge

More Time Pressure!

Challenge: More Time Pressure!

- Early 2023: need citations of all Papers for the Seminal Graphics Papers Vol. 2
- How do citations work in the DL?
- It's dynamic content but easy to get from page
- Re-download all Proceedings and TOG volumes again for up to date
- Re-process all HTML to get citations
- Either send the new Excels or try to merge manually

Bumps

- Borked system (deadsnakes!): reinstall and switch to miniconda (Python 3.12 with TOML)
- Papers are now separated between TOG and Proceedings

Thanks!