
PRIOR WORK

OUR METHOD CONCLUSIONS AND

FUTURE WORK

Jonathan Merrin, Northeastern University Mike Shah, Northeastern University

Dynamic Vertex Hierarchies for Parallel
View-Dependent Progressive Meshes

ACKNOWLEDGEMENTS
I would like to thank:

Mike Shah for advising on this project,

Jackie Allex for her insight and help with literature review,

and Heila Precel for being a sounding board and editing this poster.

LITERATURE CITED
Hoppe, H. 1996. Progressive Meshes ACM SIGGRAPH 1996 Proceedings, 99-108.

Hoppe, H. 1997. View-dependent Refinement of Progressive Meshes. ACM SIGGRAPH 1997 Proceedings, 189-198.

Hu, L.; Sandler, P.; Hoppe, H. 2009. Parallel view-dependent refinement of progressive meshes. Symposium on Interactive 3D Graphics and Games
(I3D), 169-176.

Xia, J., Varshney, A. 1996. Dynamic view-dependent simplification for polygonal models. Visualization ‘96 proceedings, IEEE 327-334

Odaker, Thomas, Dieter Kranzlmueller, and Jens Volkert (2015). “View-dependent simplification using parallel half edge collapses”. In: SCG 2015
Conference on Computer Graphics, Visualization and Computer Vision

Liang Hu, Pedro V. Sandler and Hugues Hoppe (2009). “Parallel View-Dependent Refinement of Progressive Meshes”. In: Symposium on
Interactive 3D Graphics and Games (I3D), pp. 169–176.

We propose a new legality check for vsplits equivalent to that
of [Hu et al. 2009] that allows for generating dynamic vertex
hierarchies. An example of the legality check is in Figure 2
(right), and works as follows:
- We start by adding a counter to every edge in the mesh
- Every time a pair of faces is removed, each of the incident

edges have their counters incremented by 1 and merge each
pair that shares a triangle.

- To check if a vsplit is legal, we check if the edges being split
have the same values for their counters that they had after
the corresponding ecol.

- After performing a vsplit, we decrement the counters by 1.
This condition reduces to the legality rules outlined in [Hoppe
1997].

INTRODUCTION
Triangles are the basic unit of
complexity in computer rendering
applications. More triangles makes
for higher fidelity models and more
complex scenes, but longer overall
rendering times. As our scenes and
models get more detailed, we draw
more triangles to the screen per
frame.

Due to this trade-off between quality and speed, we need ways to
reduce the number of triangles we draw to the screen without
sacrificing image quality. Here we explore view-dependent methods
for reducing the number of triangles in a mesh and propose a new,
easily parallelizable scheme for efficient view-dependent
simplification. Our method requires less additional storage than
other view-dependent methods and is more flexible in its ability to
simplify meshes.

Figure 2: An update to the vertex split/edge collapse operation that shows the additional effect and

requirements of the operation under our new data structure.

w-=1

Figure 4: A visualization of our hierarchy rebalancing operation.

This example requires there to be an edge between v4 and v10.

v7

v1

v3

v2

v6

v5

v4

vsplit v7

v8 v9

v10

v4
v1

v3

v2

v6

v5

v8 v9

v10

v1

v3

v2

v6

v5

v8

v4

v9

v11

v10

Figure 3 (left) depicts the pseudocode for a
simplification algorithm using our legality
check and a list of the relevant data structures.

First we mark edges for removal (lines 1-6),
then we test the edges to see if they cause
fold-overs [Odaker et al. 2015] (lines 8-22),
then we execute the remaining edge collapses
and vertex splits (lines 24-34), which includes
updating our counters.

Our method uses a total of 46n + 72m bytes to
represent, where n is the number of vertices
in the mesh and m is the number of vertices
being displayed. This compares to [Hu et al.
2009]’s 69n + 56m. Since m is much smaller
than n, we expect this to be a significant
improvement. Figure 3: Our pseudo-code algorithm (left) and our data structures (right). Here n is used to denote the number of vertices in

the original mesh and m is used to denote the number of vertices being displayed.

Progressive Meshes (PM) allow for
dynamic LODs through incremental
mesh simplification and redetailing
using vertex splits (vsplit) and edge
collapses (ecol). View-dependent
meshes (VDPM) allow for selective
refinement of the mesh via check for
whether a vsplit introduces error
into the geometry. [Hu et al. 2009]’s
contribution is an implicit way to
check this criteria in parallel. These

[Odaker et al. 2015] provided a system for parallel ecols using the
half-edge data structure rather than a prebuilt vertex hierarchy. This
approach does not include a method for performing vsplits, but it
does introduce a method for checking whether an edge collapse will
cause a mesh fold-over in parallel.

approaches each rely on preconstructing and storing a vertex
hierarchy to simplify computation.

Figure 1: An example of view

dependent simplification

We believe our method will improve the flexibility of parallel view-
dependent progressive meshes and reduce the amount of space
required to use them with minimal performance penalty. Unlike
precomputed vertex hierarchies, our dynamic vertex hierarchies
can be built in a view dependent way. This minimizes constraints
on removing geometry from the mesh and allows us to decide
which vertices depend on which at runtime.

One potential problem we foresee is that having a dynamic vertex
hierarchy could increase the chance of worst case behavior in the
form of long dependency lines. For this we propose an amortized
rebalancing operation (Figure 4), which works as follows:

- First, we mark an edge with a dependency line that is more than
two greater than any of its neighbors as a candidate for
rebalancing. Conveniently, the counter described in Figure 2 also
serves to keep track of the length of dependency lines.

- Next, we mark edges with dependency lines more than two
greater than their neighbors as candidates for rebalancing.

- Finally, in the rebalancing step, we shift one node to a
neighboring dependency line, as seen in Figure 4. This will not
affect performance, since the amount of rendered geometry is
unchanged.

Upon completion of the implementation and benchmarking of the
above work, we will analyze the effect of including the amortized
rebalancing operation against our baseline. Afterwards we will
explore other applications of our system, including reducing
meshes for shadow-casting and collision detection.

