Newton's Fractals on Surfaces via Bicomplex Algebra

GOALS AND MOTIVATIONS

Procedural generation of 3D and 4D fractals.
Fractal patterns are very useful for volumetric rendering and surface decoration.

STATE OF THE ART

Fractals are widely used for 2D visualization.
Common approaches for 3D and 4D are fractal noise functions (e.g. Perlin, Simplex).

Previous approaches based on bicomplex numbers have been used to generalize escape-time fractals (e.g. Mandelbrot, Julia).

BICOMPLEX NUMBERS

Bicomplex numbers form a 4D algebra with operators and differentiation rules analogue to the complex numbers.

The basis for the bicomplex space is the following

$$
\begin{aligned}
\mathbf{1}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) & \mathbf{i}=\left(\begin{array}{ll}
i & 0 \\
0 & i
\end{array}\right) \\
\mathbf{j}=\left(\begin{array}{ll}
0 & i \\
i & 0
\end{array}\right) & \mathbf{k}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
\end{aligned}
$$

There is a relation between complex and bicomplex polynomial roots

$$
\begin{array}{cc}
\alpha_{p}=\exp \left(2 \pi i \frac{p}{n}\right) & \beta_{p q}=\frac{\left(\alpha_{p}+\alpha_{q}\right) \mathbf{1}+\left(\alpha_{p}-\alpha_{q}\right) \mathbf{k}}{2} \\
\text { solves } & \text { solves } \\
c^{n}-1=0 & z^{n}-1=0
\end{array}
$$

OUR APPROACH

Generalization of the Newton's fractals in the bicomplex setting.
Efficient pixel shader implementation of the needed algebraic operations
Smooth convergence gradient for additional details in the pattern.

Efficient computation of the Newton-Raphson method.

$$
z_{k+1}=z_{k}-\frac{f\left(z_{k}\right)}{\frac{\partial f\left(x_{k}\right)}{\partial z}}=z_{k}-\frac{z_{k}^{n}-1}{n z_{k}^{n-1}}=\frac{1}{n}\left((n-1) z_{k}+z_{k}^{1-n}\right)
$$

Smooth convergence gradient for additional detail in the pattern.

$$
P-\sum_{k=0}^{P} \frac{1}{1+\exp \left(\delta_{k}+\theta\right)-\exp (\theta)}
$$

APPLICATIONS

Procedurally generated textures can be easily used as decoration pattern for surfaces. The convergence gradient gives good results when used as a bump map.

The regions identified by the solutions of the bicomplex polynomials can be used for masking. Different materials can be applied to different regions of the surface identified by the fractal.

Solution regions can also be visualized in 3D by means of volumetric rendering.
These regions can be used for interesting 3D visualizations, as well as discrete 3D filters.

