SCATTERING FROM ELLIPTICAL HAIR FIBERS BASED ON MICROFACET THEORY

WEIZHEN HUANG ${ }^{1}$, MATTHIAS B. HULLIN¹, JOHANNES HANIKA² UNNVERSITY OF BONN, GERMANY ${ }^{2 K}$ KARLSRUHE INSTITUTE OF TECHNOLOGY, GERMANY

PROBLEM

Traditional hair scattering model [1] assumes that the bidirectional curve scattering distribution function (BCSDF) is separable in the longitudinal and azimuthal directions, which does not correspond to the measurement [2].

There has been an attempt to address the nonseparability of the BCSDF [3]; however, it is only an approximation of the underlying rough cylinder assumption and is only available for circular cross sections.

RELATED WORK

To our knowledge, [3] is the only previous work that proposed a non-separable model for circular hair fibers.

Recent works on rendering elliptical hair fibers [2,4] are based on separable BCSDF proposed by Marschner et al. [1].

OUR APPROACH

We model a hair fiber as an elliptical cylinder with microfacet roughness and calculate the radiometric quantities directly as light interacts with it. This results in a set of integral equations, which we evaluate by combining quadrature and Monte-Carlo sampling.

REFERENCES

[1] Stephen R Marschner, Henrik Wann Jensen, Mike Cammarano, Steve Worley, and Pat Hanrahan. 2003. Light scattering from human hair fibers. ACM Transactions on Graphics (TOG) 22, 3 (2003), 780-791. [2] Pramook Khungurn and Steve Marschner. 2017. Azimuthal scattering from elliptical hair fibers. ACM Transactions on Graphics (TOG) 36, 2 (2017), 1-23.
[3] Eugene d'Eon, Steve Marschner, and Johannes Hanika. 2014. A fiber scattering model with non-separable lobes. In ACM SIGGRAPH 2014 Talks. 1-1.
[4] Alexis Benamira and Sumanta Pattanaik. 2021. A Combined Scattering and Diffraction Model for Elliptical Hair Rendering. Computer Graphics Forum (2021).

METHOD

RESULTS

$1024 \times 1024,256$ spp, 21 min

separable model [1]

