GENERATION OF TRADITIONAL JAPANESE PATTERNS FROM NATURAL PATTERNS WITH STYLEGAN

ASAHI ADACHI, LANA SINAPAYEN, JUN REKIMOTO

PROBLEM

- aim to generate traditional - We Japanese patterns (wagara) images with the artificial neural network.
- GANs require large datasets; however, there is no or limited wagara data.
- Also, patterns have characteristics that natural images (e.g., human faces) do not have.

METHOD

- We used the DTD dataset [1] as a source dataset and the wagara dataset (constructed from [2, 3]) as a target dataset.
- We trained StyleGAN2 [4, 5] on the source dataset, and transfer learning was performed on the target dataset following layer swapping [6].
- We used source parameters at the coarse and medium levels, and target parameters at the fine level.

RESULTS

- Our method successfully generated patterns of repeating structures with wagara-like styles and colors. The following image compares the natural patterns generator and the wagara generator.

- In the future, we plan to create fabrics with the generated designs.

WE GENERATED TRADITIONAL JAPANESE PATTERNS (WAGARA) IMAGES FROM NATURAL PATTERNS USING STYLEGAN2 AND LAYER SWAPPING.

SIGGRAPH 2022 VANCOUVER+ 8-11 AUG

OUR APPROACH

- Wagara is inspired by patterns and textures in our daily life or created with motifs (e.g., plants and animals). Based on this inspiration, we used a dataset of patterns and textures in the wild as a source dataset.

LIMITATIONS

- The evaluation is difficult because wagara is not well defined.
- Some lines that should be straight are curved, and some areas that should be uniform in color are uneven.

REFERENCES

- [1] Mircea Cimpoi, Subhransu Maji, Iasonas Kokkinos, Sammy Mohamed, and Andrea Vedaldi. 2014. Describing Textures in the Wild. CVPR.
- [2] Yoshio Jogan. 2009. Japanese Pattern Parts & Patterns. Sotechsha. (in Japanese).
- [3] Yoshio Jogan. 2010. Japanese Pattern Parts & Patterns Vol.2. Sotechsha. (in Japanese).
- [4] Tero Karras, Samuli Laine, and Timo Aila. 2019. A Style-Based Generator Architecture for Generative Adversarial Networks. CVPR.
- [5] Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, and Timo Aila. 2020. Analyzing and Improving the Image Quality of StyleGAN. CVPR.
- [6] Justin N. M. Pinkney and Doron Adler. 2020. Resolution Dependant GAN Interpolation for Controllable Image Synthesis Between Domains. NeurIPS Workshop.

ACKNOWLEDGEMENTS

Computational resource of AI Bridging Cloud Infrastructure (ABCI) provided by National Institute of Advanced Industrial Science and Technology (AIST) was used.

QR CODE TO WEBSITE WITH FULL PAPER

