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Figure 1: Data used for subsequent analysis. A mixture of three
cell types was prepared, as shown in the visible light micrograph:
red blood cells, algae, and yeast. The maps of particular elements
(K, P, Mn, Fe, and Zn) obtained from X-ray fluorescence images hint
at the characteristics of the different cell types: Mn is prevalent in
algae and Fe in red blood cells, while Zn and P are indicative of
yeast cells. The visible light micrograph was acquired at one focal
plane and thus does not show all cells; separate slight distortions
in relative cell positions between the X-ray fluorescence maps and
the visible light micrograph were not adjusted for.

1 Introduction and Motivation

X-ray fluorescence microscopy is a powerful technique to map and
quantify trace element distributions in biological specimens. It is
perfectly placed to map nanoparticles and nanovectors within cells,
at high spatial resolution. Advances in instrumentation, such as
faster detectors, better optics, and improved data acquisition strate-
gies are fundamentally changing the way experiments can be car-
ried out, giving us the ability to more completely interrogate sam-
ples, at higher spatial resolution, higher throughput and better sen-
sitivity. Yet one thing is still missing: the next generation of data
analysis and visualization tools for multidimensional microscopy
that can interpret data, identify and classify objects within datasets,
visualize trends across datasets and instruments, and ultimately en-
able researchers to reason with abstraction of data instead of just
with images.

We will present a novel approach to locate, identify, and refine po-
sitions and whole areas of cell structures based on elemental con-
tents measured by X-ray fluorescence microscopy. We show that by
initializing with only a handful of prototypical cell regions, this ap-
proach can obtain consistent cell populations, even when cells are
partially overlapping, without training by explicit annotation. It is
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Figure 2: Example of the progress of group merging and deleting
operations. (a) Initial configuration; (b),(c) merging two red blood
cell groups; (d),(e),(g) merging two yeast cell groups; (f) deleting a
yeast cell group. The overlay of Mn (green), Fe (red), and Zn (blue)
elemental maps (h) shows that this area contains four red blood
cells and one yeast cell, which overlaps one of the red blood cells.
The end configuration in (g) shows that the estimation procedure
identifies this configuration correctly. Group boundaries are shown
as ellipses for illustration only; all operations are based on taking
the union of pixels.

robust both to different measurements on the same sample and to
different initializations. This effort provides a versatile framework
to identify targeted cellular structures from datasets too complex
for manual analysis, like most X-ray fluorescence microscopy data.

2 Our Approach

We start by thresholding pixels into foreground/background com-
ponents based on their elemental content, then obtain an initial
guess of the cells based on segmentation of the foreground pixels.
We then use a generalized likelihood ratio test to improve the cell
configurations and to refine these putative cell areas with respect
to the multiple elemental distributions simultaneously. One of the
strengths of this algorithm is its ability to identify and distinguish
even overlapping objects (several recent methods can handle only
samples that are at most touching at the boundaries [Arteta et al.
2012; Bergeest and Rohr 2012]). We will demonstrate the approach
on a dataset with three cell types shown in Fig 1 we acquired at
beamline 2-ID-E of the Advanced Photon Source at Argonne Na-
tional Laboratory. In this dataset, we identified around 320 cells
with many regions of strong overlap.
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