
Parallel Computing with Multiple GPUs on a Single Machine to Achieve
Performance Gains

Robert Gulde1

Georgia State University
robertgulde@motorola.com

Michael Weeks2

Georgia State University
sowen@cs.gsu.edu

Scott Owen3

Georgia State University
mweeks@cs.gsu.edu

Yi Pan4

Georgia State University
pan@cs.gsu.edu

1 Introduction

Using a technique similar to cluster based computing, this
research demonstrates the use of multiple Graphics Processing
Units (GPUs) to achieve enhanced performance on a single
processor workstation. Past examples of performance gains
achieved by cluster based computing in order to speed up the
rendering process have been demonstrated. However, these
approaches have neglected parallel processing capabilities
through multiple graphics cards with hardware acceleration on a
single CPU based computer. In this research a technique was
developed to utilize multiple threads to drive hardware
accelerated graphics cards.

Performance gains achieved by this technique demonstrated that
GPUs on a single CPU system follow both Gustafson’s Law of
constant time as work load scales with the number of GPUs and
Amdahl’s Law of speed up achieved through work division
across processing elements.

2 Exposition

The technique focused on in this research was to have individual
threads load and execute the rendering pass within their own
rendering and device contexts. This allows the individual
threads to block while the graphics hardware executes OpenGL
rendering calls. When a thread blocks on the graphics drivers,
other threads then load and execute rendering instructions. The
performance increase is due to running the GPUs
simultaneously.

Figure 1 demonstrates the test system in which a main
controlling thread initiates rendering threads and then starts the
rendering pass via event signaling. Following this each of the
threads loads and executes a Cg test a barrier by first signaling
the main thread via a semaphore then blocking on the next event
signaling algorithm. As each thread finishes, they synchronize
on. Figure 2 demonstrates the mitigation of overhead effects on
scaled workload for 4 GPUs as instruction count is increased.

Thread

WAIT on
Event

Render x n

Signal
Finish

Thread

WAIT on
Event

Render x n

Signal
Finish

Thread

WAIT on
Event

Render x n

Signal Finish

Thread

WAIT on
Event

Render x n

Signal
Finish

n threads

Thread synchronization and timing plus GPU affinity

= Capture the Clock TickCPU

GPU 2 GPU 3 GPU 4GPU 1

WinMain

LOOP:
Signal
Events
(GO)

Gather
Completion

Signals
(FINISH)

Go To
LOOP

= Thread of execution

Figure 1. Synchronization of multiple rendering threads.

0.00%
50.00%

100.00%
150.00%
200.00%
250.00%
300.00%

0 50 100 150 200 250

Instruction Count (IC)

O
ve

rh
ea

d
4 GPUs
Power (4 GPUs)

Figure 2. Effect of Overhead reduced as a function of the
instruction count, for 4 GPUs.

Four nVidia FX5200 PCI based graphics cards were utilized in
this research. Several algorithms and problem sizes were
explored utilizing this test framework. Larger and more complex
algorithms exhibited greater amounts of speed up or constant
time results. It was found that four GPUs could achieve four
times the work with only a 1.82% time penalty, while taking a
single set of data and dividing the work by 4 GPUs resulted in a
speed up of 355%.

3 Conclusions

This research demonstrates that 4 GPUs driven in parallel can
achieve lower bound improvements of either 4 times the work
with an 11% time penalty, or a speed up of 352% by dividing
the work across 4 PCI based GPUs.

