
Particle Filter on GPUs for Real-Time Tracking

Antonio S. Montemayor∗
ESCET-URJC

Juan Jośe Pantrigo
ESCET-URJC

Ángel Śanchez
ESCET-URJC

Felipe Ferńandez
FI-UPM

1 Introduction

Efficient object tracking is required by many Computer Vision ap-
plication areas like surveillance or robotics. It deals with state-
space variables estimation of interesting features in image se-
quences and their future prediction. Probabilistic algorithms has
been widely applied to tracking. These methods take advantage of
knowledge about previous states of the system reducing the compu-
tational cost of an exhaustive search over the whole image. In this
framework, posterior probability density function (pdf) of the state
is estimated in two stages: prediction and update. General particle
filters are based on discrete representations of probability densities
and can be applied to any state-space model [Arulampalam et al.
2002]. Discrete particlesj of a set(Xt ,Πt) = {(x0

t ,π0
t)...(xN

t ,πN
t)}

in time stept, contains information about one possible state of the
systemx j

t and its importance weightπ j
t . In a practical approach,

particle weights computation is the most expensive stage of the par-
ticle filter algorithm, and it has to be executed at each time step for
every particle [Deutscher et al. 2000].

Consumer graphics processing units (GPU) have become inexpen-
sive and programmable stream processors. Their programmable
capabilities have drastically grown and this has helped the devel-
opment of applications far beyond rendering purposes.

In this work, we have designed and implemented a preliminary real-
time particle filter algorithm that makes use of a GPU to execute the
algorithm’s main performance bottleneck. Our strategy uses a tex-
ture multiplication for reducing the computational efforts generated
by a sequential evaluation. This work presents some similarities
with the work of [Oh and Jung 2004] applied to GPU implementa-
tion of neural networks.

2 Exposition

Figure 1 outlines an iteration of the particle filter algorithm. The
performance of the filter has been tested on a rolling ball sequence.
The actual frame of the sequence is loaded into main memory and
N samples are taken using(x,y) coordinates stored in each parti-
cle. In the first iteration this sampling is randomly generated from a
uniform pdf. In a measurement processN square windows are cap-
tured from the image using the coordinates given by the previous
sampling stage. These windows are arranged and loaded in a first
texture unit (Tex0). In another one (Tex1) a tracked shape template
is loaded. This template consists ofN repeated instances with the
same size and spatial distribution of the target shape.

Particle weights computation is based on a template matching ap-
proach although we have previously sampled the original image at
discrete locations instead of performing an exhaustive search. In or-
der to improve weights computation a fragment program is created
to carry out an effective hardware accelerated texture multiplica-
tion. The overlapping of both textures results the likelihood of a
template given a measure. As we have chosen square regions for
each measurement a mipmap reduction is accomplished to get an
estimation of the particle weightsπ j

t in each pixel position.

∗e-mail: a.sanz@escet.urjc.es

Frame 1 Frame 2 Frame 3 Frame 4 Frame 5

Tex1

Tex0

Fragment Program

EVALUATION

ESTIMATION

PREDICTION

DIFFUSION

SELECTION

Measurement process

Tex1*Tex0 MipMap Reduction

(Xt, Pt)

(Xt, Pt)

1

N

.

.

.

.

.

.

.

.

.

.

.

.

.

1

N

(X*
t,N

-1)

(X*
t,N

-1)

(Xt+1,N
-1)

xt
max

. . . .

Image
sequence

Data input

Figure 1: Hybrid GPU/CPU particle filter scheme.

Next, we get the rendering results to proceed with the following
stages of the particle filter. The particle with the maximum weight
xmax
t is selected as best candidate for the state of the system in the

iteration. A new particle set (X∗t ,N−1) at time t is created by se-
lecting individuals fromXt with probabilitiesπ j

t . We use a roulette
wheel as selection strategy. Since particles with larger weight val-
ues can be chosen several times, a Gaussian diffusion stage is ap-
plied to avoid loss of diversity. Finally, particle set at timet + 1,
(Xt+1,N−1), is predicted by using an appropriate motion model.

3 Conclusion

A preliminary real-time particle filter that exploits the intrinsic par-
allelism of GPUs architecture has been implemented. As future
works we propose comparisons between GPU and optimized CPU
implementations. Also it would be very interesting to study related
realistic applications of this GPU particle filter framework such as
articulated motion and multiple object tracking.

References

ARULAMPALAM , S., MASKELL , S., GORDON, N., AND CLAPP,
T. 2002. A tutorial on particle filters for on-line nonlinear/non-
gaussian bayesian tracking.IEEE Trans. on Signal Processing
50, 2, 174–188.

DEUTSCHER, J., BLAKE , A., AND REID, I. 2000. Articulated
body motion capture by annealed particle filtering. InProc. of
the IEEE Conf. on CVPR, vol. 2, 126–133.

OH, K.-S., AND JUNG, K. 2004. Gpu implementation of neural
networks.Pattern Recognition 37, 1311–1314.

