
Stylized Haloed Outlines on the GPU

Jörn Loviscach∗

Hochschule Bremen

1 Introduction

Methods to emphasize outlines form a major branch of non-
photorealistic rendering. Recently, McGuire and Hughes [2004]
have demonstrated how to render stylized outline strokes entirely
with graphics hardware, extending an approach proposed by Card
and Mitchell [2002]. To this end, not only the original 3D mesh
but also additional geometry is sent to the graphics card. The addi-
tional geometry contains degenerated quadrangles along all edges
of the original mesh. A special vertex shader tests for each edge if
it forms a border between a front- and a back-facing polygon. If so,
the zero-area quadrangle is extruded into a visible fin.

We present a related approach with the following improvements,
see Fig. 1: The outline strokes are visible both inside and outside
the silhouette and possess soft halos; smoothly curved outlines are
generated even from low-resolution meshes; complex outline styles
such as sketch-like strokes are generated; the amount of data per
vertex is reduced.

Figure 1: A stylized rendering with sketch-like strokes and soft
halos. The inset shows a detail of the strokes.

2 Extraction and Rendering of Silhouettes

In a preprocessing step, the edges of the original mesh are collected
and used to build an edge mesh. This is rendered several times
per frame with different settings. Edges that form a part of the sil-
houette are extruded inside and/or outside through a vertex shader,
yielding quadrangles oriented toward the viewer. These serve as
depth mask or as canvas for the stylized stroke.

We use a sequence of render operations on the main buffer and one
additional off-screen buffer. The off-screen buffer is mainly used
to collect depth and intensity information about the outer, soft part
of the halo. To blend soft halos together, we employ theMax oper-
ation instead of linear alpha blending. This effectively suppresses
the artifacts of the silhouette extraction such as zigzag structures
[Isenberg et al. 2002], which would otherwise become visible be-
hind semi-transparent polygons.

The original objects are rendered into the main buffer first normally
and then shrunk along the vertex normals through a vertex shader.

∗e-mail: jlovisca@informatik.hs-bremen.de

The latter form is used as depth mask, which allows to draw strokes
that extend to both the inside and the outside of the silhouette. A
pixel shader paints the quadrangles employing 1D texture lookups
to control the profile of a stroke. In Fig. 1 the pixel shader adds
three different strokes in a single pass, applying a different offset
to each stroke. The offset is read from a texture using image-space
position asuvcoordinates.

In addition, the pixel shader introduces a cubic deformation to the
2D screen projection of the silhouette line so that the strokes appear
smooth, no longer polygonal, see Fig. 2. The deformed curve runs
perpendicular to the screen projection of the vertex normals and
thus is tangent continuous at the vertices.

Figure 2: Using cubic deformation, even coarsely tessellated
meshes (left) lead to smooth outlines (right).

Both to save memory bandwidth and to free per-vertex attributes for
other uses, we strove to store the data in a compact format. The face
normals of the two adjacent faces are used to decide if an edge is on
the silhouette. A little algebra allows to store the two face normals
via four floating point values with no need for trigonometric func-
tions. The face normals are perpendicular to the edge, so that its
direction is already determined by them. Thus, the vector from one
vertex of an edge to the other can be stored with just one additional
floating point value. In total, for every edge of the original mesh a
quadrangle is stored that uses additional vertex attributes amount-
ing to 52 floating point values, where McGuire and Hughes [2004]
use 76 floats with less complex stylization.

3 Conclusion

We have presented a method to render complex outlines with soft,
semi-transparent halos entirely on the GPU. The prototype has been
implemented in C# and HLSL. It can render 3D objects containing
tens of thousands of edges in real time on current graphics cards.

References

CARD, D., AND M ITCHELL , J. L. 2002. Non-photorealistic ren-
dering with pixel and vertex shaders. InShaderX: Vertex and
Pixel Shaders Tips and Tricks, W. Engel, Ed. Wordware, 319–
333.

ISENBERG, T., HALPER, N., AND STROTHOTTE, T. 2002. Styl-
izing silhouettes at interactive rates: From silhouette edges to
silhouette strokes.Computer Graphics Forum 21, 3, 249–258.

MCGUIRE, M., AND HUGHES, J. F. 2004. Hardware-determined
feature edges. InProc. NPAR 2004, 135–147.


