
Real-Time Bump Map Deformations

Pawel Wrotek∗

Brown University
Alexander Rice†

Brown University
Morgan McGuire‡

Brown University

Figure 1: 1. Initial bump and normal maps for the floor. 2-4. Cow collides with floor. 5. Geometry is unchanged. 6. Floor bump and normal
maps now contain a cow-shaped dent. The cow’s bump and normal maps (not shown) are also flattened and deformed by the floor texture.

Abstract
We present a method for efficiently generating plausible dents and
scratches due to collisions using bump maps instead of mesh defor-
mation. We use a rigid body simulator based on that of Guendelman
et al. [2003], with collisions detected by interpenetration using the
OPCODE and G3D libraries. When a collision occurs, we make
multiple rendering passes to compute the bump map deformation
on the GPU. Our method is limited by the dynamic range of the
bump maps and will eventually saturate.

1 Parameterization and Rendering
As a pre-process, we create a parameterization for each object that
provides a 1:1 mapping from points on the object to points on the
bump map so that each point may be deformed independently dur-
ing simulation. We use Sheffer and de Sturler’s parameterization
[2001], which minimizes shear and provides roughly uniform bump
map resolution across the surface. The gradient of the bump map is
Sobel filtered to produce a smooth normal map.

Objects are rendered in real-time with parallax bump mapping,
a recent hardware-rendering trick that approximates both self-
occlusion and shading for a rough surface.

2 Deforming Bump Maps on Collision
When objects A and B collide, their momentum is altered as if they
were rigid bodies but their bump maps are deformed as if they were
malleable. The location and shape of the deformation is computed
by rendering their overlap to an offscreen depth-buffer as follows.

Place an orthographic camera a small distance along A’s collision
normal, facing towards the collision location (Figure 2.2). Execute
the following steps (with no lighting or parallax bump mapping):

1. Clear the frame buffer.

2. Render the front faces of A but substitute for the color texture
an address map, which has color (r,g,0) at texel (r,g).

∗e-mail: pwrotek@cs.brown.edu
†e-mail: acrice@cs.brown.edu
‡e-mail: morgan@cs.brown.edu

Figure 2: (1) A and B prior to collision. (2) Orthographic camera
setup used to compute deformations on the GPU. (3) Front faces of
A. (4) Back faces of B. Green box represents pixels where stencil
buffer is set to 1, i.e. where B penetrates A.

3. Read back the depth buffer D0 (which now holds the ”highest”
points on A) and the color buffer CA.

4. Set the depth test to pass when the new pixel is farther from
the camera than the old one (GL GREATER).

5. Render the back faces of B using the address map, and set the
stencil buffer to 1 wherever the depth test passes (i.e. wher-
ever B penetrates A.)

6. Read back the depth buffer D1 (containing the ”lowest” points
on B), the color buffer CB, and the stencil buffer S.

The color buffers tell us which bump map locations correspond
to penetration locations, e.g., where CA[i, j] = (r,g,b), pixel (i, j)
was rendered by texel (r,g). The difference ∆D(i, j) = D1(i, j)−
D0(i, j) measures A’s geometry penetration into B at this location1.

To actually modify the bump map, we iterate over each pixel
CA[i, j] = (r,g,b) on the CPU, and, if S[i, j] = 1 and texel (r,g)
in the bump map has not yet been modified for this collision, we
indent it by ∆D[i, j]. This process is repeated for CB and B’s bump
map. Finally, we recompute the normal map. Modifying the bump
maps on the GPU is an open problem; the challenge is ensuring that
the net change to a bump texel is independent of the area it affects
during rendering.

References
GUENDELMAN, E., BRIDSON, R., AND FEDKIW, R. 2003. Non-

convex rigid bodies with stacking. ACM Trans. Graph. 22, 3,
871–878.

SHEFFER, A., AND DE STURLER, E. 2001. Parameterization of
faceted surfaces for meshing using angle based flattening. Engi-
neering with Computers 17, 3, 326–337.

1We also add the difference in bump maps so that a bump map feature
can create a dent. As future work, we will write to the gl FragDepth register
to modify the depth maps as they are rendered in steps 2 and 5.


