The XML3D Architecture

Kristian Sons*!->3, Felix Klein'!?, Jan Sutter*!-, and Philipp Slusallek* !

!'Saarland University

1 Introduction

Graphics hardware has become ubiquitous: Integrated into CPUs
and into mobile devices and recently even embedded into cars.
With the advent of WebGL, accelerated graphics is finally acces-
sible from within the web browser. However, still the capabilities
of GPUs are almost exclusively exploited by the video game indus-
try, where experts produce specialized content for game engines.

XML3D aims answering the question of how we could make 3D
graphics available to a broader audience. The approach is to tar-
get web developers, making 3D application development as similar
as possible to web application development. Unlike previous ap-
proaches such as VRML, XML3D takes the capabilities of modern
graphics hardware into account, without tying it to a specific ren-
dering algorithm.

The novel concepts of XML3D, including its seamless integration
into existing web technologies and its approaches for dynamic ef-
fects, programmable materials, and instancing of configurable as-
sets are spread across various publications. The poster depicts the
overall architecture of XML3D based on the mark-up of an actually
running example scene (see Figure 1).

2 Our Approach

XML3D [Sons et al. 2010] is an extension to HTMLS5 that allows
describing interactive 3D graphics in any web page. XML3D is
renderer-independent and contains elements for geometry, lights,
etc. It supports event attributes such as onclick and reuses existing
HTML elements, CSS and other concepts wherever possible.

XML3D has a generic approach to data where users can define ar-
bitrarily named parameters that can be used e.g. as mesh attributes,
material parameters, or as input of our dataflow approach. These
parameters can be clustered in data blocks which can be reused,
specialized and composed from multiple sources. Structured 3D
data (assets) can be externally defined and instanced multiple times
within the scene [Klein et al. 2014]. Each asset can be specialized
during instantiation by overriding values from within the asset.

With Xflow [Klein et al. 2013], data blocks can be composed in a
graph. By attaching an operator to a data block, the graph can be
transformed into a dataflow processing graph. Such dataflows can
be used for geometry processing (e.g. skinning and morphing), an-
imations, image processing (e.g. post-processing and AR), etc. Its
declarative approach allows mapping computations to the GPU and
other parallel processors via various supported APIs (e.g. WebGL,
WebCL, ParallelJS, SIMD js).

*e-mail: {kristian.sons, jan.sutter, and slusallek } @dfki.de
Te-mail: klein@intel-vci.uni-saarland.de

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for commercial advantage and that copies bear this notice and the full citation on the
first page. Copyrights for third-party components of this work must be honored. For all
other uses, contact the Owner/Author.

Copyright is held by the owner/author(s).

SIGGRAPH 2015 Posters, August 09 — 13, 2015, Los Angeles, CA.

ACM 978-1-4503-3632-1/15/08.

http://dx.doi.org/10.1145/2787626.2792623

2Intel VCI

SDFKI

Figure 1: A screenshot of the scene illustrated in the poster using
XML3D as scene description running in Google Chrome.'

Using shade.js [Sons et al. 2014], developers can write portable ma-
terials using JavaScript. It is renderer agnostic, adaptive and com-
piles to GLSL for forward and deferred rendering via OpenGL but
can also compile to e.g. OSL for ray tracing and global illumination.

In XML3D, geometry data, lights and materials, but also generic
data and dataflow graphs are resources which can be defined in
the same document or by external resources, e.g. referenced doc-
uments or services. Those resources can be streamed to the client
using Blast [Sutter et al. 2014], a novel format for the transmis-
sion of structured binary data. Additionally, Blast offers a flexible
approach to compression based on a code-on-demand approach.

Despite its high abstraction level, XML3D offers mechanisms such
as data flow processing and programmable shading in order to ex-
pose the flexibility of programmable GPUs. The polyfill implemen-
tation xml3d.js uses JavaScript and WebGL to emulate XML3D in
standard browsers. We plan to examine the usability of XML3D in
future work. For more information refer to: http://www.xml3d.org.

References

KLEIN, F., SoNs, K., RUBINSTEIN, D., AND SLUSALLEK, P.
2013. XML3D and Xflow: Combining Declarative 3D for the
Web with Generic Data Flows. [EEE Computer Graphics and
Applications 33, 5.

KLEIN, F., SPIELDENNER, T., SONS, K., AND SLUSALLEK, P.
2014. Configurable Instances of 3D Models for Declarative 3D
in the Web. In Proceedings of the 19th International Conference
on 3D Web Technologies, ACM.

Sons, K., KLEIN, F., RUBINSTEIN, D., BYELOZYOROV, S., AND
SLUSALLEK, P. 2010. XML3D: Interactive 3D Graphics for the
Web. In Proceedings of the 15th International Conference on 3D
Web Technologies, ACM, no. 212.

Sons, K., KLEIN, F., SUTTER, J., AND SLUSALLEK, P. 2014.
shade.js: Adaptive Material Descriptions. Eurographics: Com-
puter Graphics Forum 33, 7.

SUTTER, J., SONS, K., AND SLUSALLEK, P. 2014. Blast: A
Binary Large Structured Transmission Format for the Web. In
Proceedings of the 19th International Conference on 3D Web
Technologies, ACM.

Thttp://xml3d.github.io/xm13d-examples/examples/poster/index.html


http://www.xml3d.org
http://xml3d.github.io/xml3d-examples/examples/poster/index.html

