
Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for commercial advantage and that copies bear this notice and the full citation on the
first page. Copyrights for third-party components of this work must be honored. For all
other uses, contact the Owner/Author.
SIGGRAPH 2014, August 10 – 14, 2014, Vancouver, British Columbia, Canada.
2014 Copyright held by the Owner/Author.
ACM 978-1-4503-2958-3/14/08

0%

1%

2%

3%

0 20 40 60

p
er

ce
nt

ag
e

of
 t

ri
an

g
le

s
[%

]

minimal angle [°]
45 PpD 2000 PpD
Delaunay

E2

0%

1%

2%

3%

4%

0 2 4 6

p
er

ce
nt

ag
e

o
f

te
tr

ah
ed

ra
 [

%
]

minimal solid angle [steradian]
171 PpD 400 PpD
Delaunay

E3

In-Core and Out-Core Memory Fast Parallel Triangulation Algorithm

for Large Data Sets in E2 and E3

Michal Smolik1 Vaclav Skala2

University of West Bohemia, Plzen, Czech Republic

1 Introduction

Today’s applications need to process large data sets using several
processors with a shared memory, i.e. in parallel processing,
or/and on systems using distributed processing. In this paper we
describe an approach applicable for effective triangulation in ��
and �� (tetrahedralization) for large data sets using CPU and/or
GPU parallel or distributed systems, e.g. computational clusters.

In many cases we do not need exact Delaunay triangulation [Chen
2011] or another specific triangulation. Triangulation as “close
enough” to the required type of triangulation is acceptable.
Weakening this strict requirement enables us to formulate a
simple “Divide & Conquer” algorithm [Cignoni et al. 1998]. The
approach is independent from the triangulation property
requirements.

2 Principle of the Proposed Algorithm

The given data set can be split to several subsets, not necessarily
rectangular, i.e. to � × � domains in ��, resp. 	� × � × � in ��.
Each data subset contains the original points plus additional
corner points of the appropriate domain. Every domain is
triangulated using any triangulation library.

Now, joining two
triangulated domains is
simple as those two
domains share the same
corner points. We only
have to replace the
common edge EF by the
edge AB (see Fig. 1). It can
be seen that the connection
of triangulated subsets is extremely simple in the �� case. In the
�� case the situation is similar and simple too.

The corner points can be retained in the tri-angulation, or can be
re-moved and “star-shape” holes have to be re-tri-angulated
[Schaller and Meyer-Hermann 2004].

It should be noted that domain triangulations are totally
independent. If the domains’ corner points have to be removed,
the created holes have to be tessellated. The processes are
independent again and can be executed totally in parallel.

In the case of large data, we do not have to process all domains at
once, but can process them in some smaller parts considering the
size of available memory. As domain triangulation and their
joining are independent, there is no change in the proposed
algorithm and it can be implemented easily.

3 Experimental Results

The quality of the triangulation has been tested on data sets with
uniform distribution. The Delaunay triangulation maximizes the
minimum angle therefore it is appropriate to test the distribution
of minimal internal angles in triangles, resp. tetrahedra, see
Graph 1&2. The more points per domain that are used, the closer
our triangulation is to the Delaunay triangulation.

The Delaunay triangulation maximizes the mean ‘inradius’. It can
be seen that, in the case of removing the corner points, there is
only a 5% difference to the Delaunay triangulation.

The approach
proposed has
been tested on
synthetic & real
data sets, e.g.
South Americas
GIS data set,
Fig. 2. Running
time for 1.1 ∙ 10�
points was
0.42[�], on uniform data set in �� the running time for 10� points
was	28.2[�] and for 10� points enables real time performance
using large number of cores. In �� runtime was 25.7[�] for 10�
points, on PC Core i7 (4×2.67GHz), 12 GB.

4 Conclusions & Acknowledgments

A new fast parallel triangulation algorithm in �� and �� has been
implemented on parallel environments with shared and/or
distributed memory using both CPU and GPU. As it is scalable,
the proposed algorithm is especially convenient for processing
large data sets. The proposed approach has been implemented and
tested using CPU and GPU as well. Research was supported by
MSMT CR LG13047, LH12181 and SGS 2013-029.

References

CHEN, M.-B. 2011. A Parallel 3D Delaunay Triangulation Method,
9th ISPA 2011, IEEE, pp.52-56.

CIGNONI, P., MONTANI, C., AND SCOPIGNO, R. 1998. DeWall: A
Fast Divide & Conquer Delaunay Triangulation Algorithm in
Ed, Computer Aided Design, Vol.30, No.5, pp.333-341.

SCHALLER, G., AND MEYER-HERMANN, M. 2004. Kinetic and
Dynamic Delaunay Tetrahedralization in Three Dimensions,
Computer Physics Communications, Vol.162, No.1, pp.9-23.

Figure 1: Joining triangulated
domains by edge EF→AB swapping.

Graph 1&2: Distribution of minimal internal angles for 107
uniformly distributed points (PpD = Points per Domain).

1e-mail: smolik@kiv.zcu.cz, 2web: www.vaclavskala.eu

Figure 2: Triangulation of South America.

