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1 Introduction 

Today’s applications need to process large data sets using several 
processors with a shared memory, i.e. in parallel processing, 
or/and on systems using distributed processing. In this paper we 
describe an approach applicable for effective triangulation in �� 
and �� (tetrahedralization) for large data sets using CPU and/or 
GPU parallel or distributed systems, e.g. computational clusters.  

In many cases we do not need exact Delaunay triangulation [Chen 
2011] or another specific triangulation. Triangulation as “close 
enough” to the required type of triangulation is acceptable. 
Weakening this strict requirement enables us to formulate a 
simple “Divide & Conquer” algorithm [Cignoni et al. 1998]. The 
approach is independent from the triangulation property 
requirements. 

2 Principle of the Proposed Algorithm 

The given data set can be split to several subsets, not necessarily 
rectangular, i.e. to � × � domains in ��, resp. 	� × � × � in ��. 
Each data subset contains the original points plus additional 
corner points of the appropriate domain. Every domain is 
triangulated using any triangulation library. 

Now, joining two 
triangulated domains is 
simple as those two 
domains share the same 
corner points. We only 
have to replace the 
common edge EF by the 
edge AB (see Fig. 1). It can 
be seen that the connection 
of triangulated subsets is extremely simple in the �� case. In the 
�� case the situation is similar and simple too. 

The corner points can be retained in the tri-angulation, or can be 
re-moved and “star-shape” holes have to be re-tri-angulated 
[Schaller and Meyer-Hermann 2004]. 

It should be noted that domain triangulations are totally 
independent. If the domains’ corner points have to be removed, 
the created holes have to be tessellated. The processes are 
independent again and can be executed totally in parallel. 

In the case of large data, we do not have to process all domains at 
once, but can process them in some smaller parts considering the 
size of available memory. As domain triangulation and their 
joining are independent, there is no change in the proposed 
algorithm and it can be implemented easily. 

3 Experimental Results 

The quality of the triangulation has been tested on data sets with 
uniform distribution. The Delaunay triangulation maximizes the 
minimum angle therefore it is appropriate to test the distribution 
of minimal internal angles in triangles, resp. tetrahedra, see 
Graph 1&2. The more points per domain that are used, the closer 
our triangulation is to the Delaunay triangulation.  

The Delaunay triangulation maximizes the mean ‘inradius’. It can 
be seen that, in the case of removing the corner points, there is 
only a 5% difference to the Delaunay triangulation. 

The approach 
proposed has 
been tested on 
synthetic & real 
data sets, e.g. 
South Americas 
GIS data set, 
Fig. 2. Running 
time for 1.1 ∙ 10� 
points was 
0.42[�], on uniform data set in �� the running time for 10� points 
was	28.2[�] and for 10� points enables real time performance 
using large number of cores. In �� runtime was 25.7[�] for 10� 
points, on PC Core i7 (4×2.67GHz), 12 GB. 

4 Conclusions & Acknowledgments 

A new fast parallel triangulation algorithm in �� and �� has been 
implemented on parallel environments with shared and/or 
distributed memory using both CPU and GPU. As it is scalable, 
the proposed algorithm is especially convenient for processing 
large data sets. The proposed approach has been implemented and 
tested using CPU and GPU as well. Research was supported by 
MSMT CR LG13047, LH12181 and SGS 2013-029. 
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Figure 1: Joining triangulated 
domains by edge EF→AB swapping. 

  

Graph 1&2: Distribution of minimal internal angles for 107 
uniformly distributed points (PpD = Points per Domain). 
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Figure 2: Triangulation of South America. 




