
Permission to make digital or hard copies of part or all of this work for personal or 
classroom use is granted without fee provided that copies are not made or distributed 
for commercial advantage and that copies bear this notice and the full citation on the 
first page. Copyrights for third-party components of this work must be honored. For all 
other uses, contact the Owner/Author. 
SIGGRAPH 2014, August 10 – 14, 2014, Vancouver, British Columbia, Canada. 
2014 Copyright held by the Owner/Author. 
ACM 978-1-4503-2958-3/14/08 

Cross-Compiled 3D Web Applications – Problems and Solutions

Christoph Müller, Fabian Gärtner

Furtwangen University, Germany∗

1 Introduction

Figure 1: A cross-compiled .NET game running inside Chrome

A number of projects, including our FUSEE engine, provide
the means to cross-compile real-time 3D applications from more
traditional programming languages such as C, C#, or Java into
JavaScript/HTML5 in order to run those applications natively in
web browsers. The current state of the FUSEE project shows that
the use of a cross-compiler and an appropriate software architec-
ture enables real-time 3D applications written in C# and on top of
FUSEE to be automatically ported to plugin-free browser applica-
tions (see Figure 1). In some cases, however, the cross-compiled
result suffers from limitations of the cross compiler, underlying li-
braries, or the JavaScript/HTML5 platform [Müller et al. in press].

In this study we identify the three most significant obstacles to
cross-compiling arbitrary real-time 3D applications into equivalent
counterparts of their native versions. Furthermore, we present our
work in progress on approaches for addressing those obstacles.

2 Solution Approaches

2.1 Performance

The runtime behavior of JavaScript applications is generally weak
compared to C# code. This is not necessarily obvious as both lan-
guages yield just-in-time compiled highly optimized machine code,
at least with contemporary JavaScript execution engines. The rea-
son for the lack of performance is the weakly typed object model
behind JavaScript. Here, the content of an object member results
in a number of recursive hash table lookups to memory locations
scattered all over the physical address space. This consumes much
more processor cycles than adding an offset to a memory address
in contiguously allocated data chunks. Our approach tries to lever-
age TypedArrays [The Khronos Group et al. 2013], a rather new
addition to JavaScript. FUSEE’s cross-compiled approach offers
the chance to modify the current cross compiler to translate well-
performing and, at the same time, object-oriented and easily read-
able C# code into JavaScript using TypedArrays.

∗e-mail: {mch, gaertner}@hs-furtwangen.de

2.2 File and Asset Serialization

Asset data should be present in a fast-to-read binary format. The se-
rialization code for reading and writing such data from and to mem-
ory (i.e., programming language constructs such as structs, classes,
and arrays) should be easy to create and maintain. A number of se-
rialization techniques exist which require minimal coding to create
serialization code from existing object structures to and from data
streams. The ”Protocol Buffers” (protobuf) project [Google Inc.
2001–2014] is a serialization library already available for multiple
platforms, such as JavaScript and C#. Unfortunately, the structures
of structs and classes are different after cross-compiling, so an auto-
matic type cast on the deserialized data would not work. Therefore,
using protobuf in a cross-compiled scenario would require man-
ual re-coding of functionality for both platforms. We found a way
to automatically transform the protobuf serialization code from C#
into JavaScript. This allows for the writing and maintenance of se-
rialization code with a single-source approach for all platforms.

2.3 GPU Programming

The growing number of platforms supported by FUSEE require a
platform abstraction for the CPU-programming part of a FUSEE
application as well as an abstraction of the underlying GPU-
programming interface. Currently, FUSEE applications need to
supply different shader code for the different GPU platforms. To
enable developers to handle GPU programming with the same
platform-independent single-source approach as CPU program-
ming, we follow an approach in which a defined subset of C# will be
used as a common shader language. In the same way the JavaScript
cross compiler creates JavaScript code from compiled C# code, an-
other cross compiler will translate compiled C# code (IL) into the
respective GPU platform language, such as GLSL, GLSL/WebGL,
or HSLS. While approaches exist for using C# on the GPU, we are
the first to exploit the cross-compile approach to bridge the gap be-
tween different GPU programming platforms and languages.

3 Conclusion

The initial results from our study described above show that a wide
variety of different types of real-time 3D applications can be auto-
matically cross-compiled to web browser applications without the
need for manual correction of the result or significant drawbacks in
terms of performance or functionality.

References

GOOGLE INC., 2001–2014. protobuf — Google Protocol Buffers:
Google’s data interchange format — Google’s Project Hosting.
Online: https://code.google.com/p/protobuf/.

MÜLLER, C., GÄRTNER, F., AND DIK, D. in press. Portable 3D-
browser-applications using cross-compiled programming lan-
guages. In Computational Science and Computational Intelli-
gence, 2014 International Conference on, IEEE, The American
Council on Science and Education. Unpublished Paper.

THE KHRONOS GROUP, HERMAN, D., AND RUSSEL, K., 2013.
Typed Array Specification — Editor’s Draft (work in progress).
Online: http://khronos.org/registry/typedarray/specs/latest/.




