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1 Introduction

Figure 1: A cross-compiled .NET game running inside Chrome

A number of projects, including our FUSEE engine, provide
the means to cross-compile real-time 3D applications from more
traditional programming languages such as C, C#, or Java into
JavaScript/HTML5 in order to run those applications natively in
web browsers. The current state of the FUSEE project shows that
the use of a cross-compiler and an appropriate software architec-
ture enables real-time 3D applications written in C# and on top of
FUSEE to be automatically ported to plugin-free browser applica-
tions (see Figure 1). In some cases, however, the cross-compiled
result suffers from limitations of the cross compiler, underlying li-
braries, or the JavaScript/HTML5 platform [Müller et al. in press].

In this study we identify the three most significant obstacles to
cross-compiling arbitrary real-time 3D applications into equivalent
counterparts of their native versions. Furthermore, we present our
work in progress on approaches for addressing those obstacles.

2 Solution Approaches

2.1 Performance

The runtime behavior of JavaScript applications is generally weak
compared to C# code. This is not necessarily obvious as both lan-
guages yield just-in-time compiled highly optimized machine code,
at least with contemporary JavaScript execution engines. The rea-
son for the lack of performance is the weakly typed object model
behind JavaScript. Here, the content of an object member results
in a number of recursive hash table lookups to memory locations
scattered all over the physical address space. This consumes much
more processor cycles than adding an offset to a memory address
in contiguously allocated data chunks. Our approach tries to lever-
age TypedArrays [The Khronos Group et al. 2013], a rather new
addition to JavaScript. FUSEE’s cross-compiled approach offers
the chance to modify the current cross compiler to translate well-
performing and, at the same time, object-oriented and easily read-
able C# code into JavaScript using TypedArrays.
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2.2 File and Asset Serialization

Asset data should be present in a fast-to-read binary format. The se-
rialization code for reading and writing such data from and to mem-
ory (i.e., programming language constructs such as structs, classes,
and arrays) should be easy to create and maintain. A number of se-
rialization techniques exist which require minimal coding to create
serialization code from existing object structures to and from data
streams. The ”Protocol Buffers” (protobuf) project [Google Inc.
2001–2014] is a serialization library already available for multiple
platforms, such as JavaScript and C#. Unfortunately, the structures
of structs and classes are different after cross-compiling, so an auto-
matic type cast on the deserialized data would not work. Therefore,
using protobuf in a cross-compiled scenario would require man-
ual re-coding of functionality for both platforms. We found a way
to automatically transform the protobuf serialization code from C#
into JavaScript. This allows for the writing and maintenance of se-
rialization code with a single-source approach for all platforms.

2.3 GPU Programming

The growing number of platforms supported by FUSEE require a
platform abstraction for the CPU-programming part of a FUSEE
application as well as an abstraction of the underlying GPU-
programming interface. Currently, FUSEE applications need to
supply different shader code for the different GPU platforms. To
enable developers to handle GPU programming with the same
platform-independent single-source approach as CPU program-
ming, we follow an approach in which a defined subset of C# will be
used as a common shader language. In the same way the JavaScript
cross compiler creates JavaScript code from compiled C# code, an-
other cross compiler will translate compiled C# code (IL) into the
respective GPU platform language, such as GLSL, GLSL/WebGL,
or HSLS. While approaches exist for using C# on the GPU, we are
the first to exploit the cross-compile approach to bridge the gap be-
tween different GPU programming platforms and languages.

3 Conclusion

The initial results from our study described above show that a wide
variety of different types of real-time 3D applications can be auto-
matically cross-compiled to web browser applications without the
need for manual correction of the result or significant drawbacks in
terms of performance or functionality.
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