
Permission to make digital or hard copies of part or all of this work for personal or 
classroom use is granted without fee provided that copies are not made or distributed 
for commercial advantage and that copies bear this notice and the full citation on the 
first page. Copyrights for third-party components of this work must be honored. For all 
other uses, contact the Owner/Author. 
SIGGRAPH 2014, August 10 – 14, 2014, Vancouver, British Columbia, Canada. 
2014 Copyright held by the Owner/Author. 
ACM 978-1-4503-2958-3/14/08 

Screen Space Cone Tracing for Glossy Reflections

Lukas Herrmanns Tobias Alexander Franke

Fraunhofer IGD & TU-Darmstadt

Figure 1: Glossy reflections at varying surface roughness in the Crytek Sponza Atrium computed with SSCT.

1 Introduction

A typical modern engine has a postprocessing pipeline which can
be used to augment the final image from a previous render process
with several effects. These usually include depth-of-field, crepus-
cular rays, tonemapping or morphological antialiasing. Such ef-
fects can be easily added to any existing renderer, since they usu-
ally rely only on information readily available in screen space. Re-
cently, global illumination algorithms have been mapped to post-
processing effects, such as the wide selection of Screen Space Am-
bient Occlusion methods. An insight in [Ritschel et al. 2009] is
that screen space algorithms can sample more information than just
occlusion: in addition to visibility Screen Space Direct Occlusion
samples neighboring pixels to gather indirect bounces. Soler et al.
[Soler et al. 2010] use mipmapped buffers to sample diffuse far-
field indirect illumination and importance sample specular cones
for glossy reflections, but do not consider to use mipmaps to access
prefiltered bounces for specular cones. We present Screen Space
Cone Tracing (SSCT), a method to simulate glossy and specular
reflections. Instead of regular screen-space ray tracing, we adopt
the concept of cone-tracing on hierarchical, prefiltered buffers to
reduce integration costs.

2 Technical Approach

The idea of cone-tracing is to replace rays with cones in a ray-tracer.
By doing so, the solid angle over which incident radiance is gath-
ered usually by sampling many rays can now be defined through
one cone which has an equivalent opening angle. A key idea in
Crassin et al. [Crassin et al. 2011] is to exploit hardware filter-
ing on 3D volumetric textures which save the first bounce of direct
illumination injected from a Reflective Shadow Map into the vox-
els of such a texture. Integrating over a cone’s opening angle in a
volumetric texture is now equivalent to a lookup on a higher level
mipmap of the filtered volumetric texture. We apply this idea to the
view-space representation of a rendered scene: For each pixel, we
reflect the view direction along its normal and cone-trace along the

reflected direction. We assume that after the initial direct hit each
pixel in the rendered camera view represents a diffuse reflector. As
long as a reflected ray will hit another part of the rendered image,
we can gather this first bounce and add it as indirect contribution
onto the pixel currently processed.

We start out with a regular render pass from the camera view into
a GBuffer which includes linear depth, normals and colors. In a
deferred pass we compute the shaded image, after which we gener-
ate mipmaps for the linear depth, the normal and the shaded image
and use them as input for SSCT. For each pixel, we reconstruct its
position P and its normal N . We step through the image from P in
the reflected viewing direction Vr for a maximum of 200 steps. To
converge onto the hitpoint faster, we increase the step-size in image-
space after each step by a factor of 2. If we overstep the hitpoint,
we go back in the opposite direction of the ray at half the step-size.
At each step, we compute the subtended angle of the cone and a
mipmap level from this area which we use to access depth, normals
and the shaded buffer. If we find a hit before leaving the visible
space of the camera perspective, the buffer with the shaded image
is queried for the indirect contribution. A larger cone opening will
yield a higher mipmap level, thus returning the pre-integrated inci-
dent radiance over its solid angle.

By relying on mipmaps of the camera view space certain integra-
tion errors are unavoidable. The most apparent is that a solid angle
can subtend either flat spaces or multiple pieces of geometry visi-
ble only at grazing angles, which can manifest as alias or temporal
inconsistency when moving the camera view. As the cone angle
size increases to simulate more glossy appearances, this error will
increase notably. Another issue is that mipmapping itself is only a
coarse approximation of the actual filtering process. We can achieve
better results with manual filtering, albeit at much higher costs.

References

CRASSIN, C., NEYRET, F., SAINZ, M., GREEN, S., AND EISE-
MANN, E. 2011. Interactive indirect illumination using voxel
cone tracing. Computer Graphics Forum.

RITSCHEL, T., GROSCH, T., AND SEIDEL, H.-P. 2009. Approx-
imating dynamic global illumination in image space. In Sympo-
sium on Interactive 3D Graphics and Games, I3D ’09, 75–82.

SOLER, C., HOEL, O., AND ROCHET, F. 2010. A deferred shading
pipeline for real-time indirect illumination. In ACM SIGGRAPH
2010 Talks, SIGGRAPH ’10, 18.




