
Permission to make digital or hard copies of part or all of this work for personal or 
classroom use is granted without fee provided that copies are not made or distributed 
for commercial advantage and that copies bear this notice and the full citation on the 
first page. Copyrights for third-party components of this work must be honored. For all 
other uses, contact the Owner/Author. 
SIGGRAPH 2014, August 10 – 14, 2014, Vancouver, British Columbia, Canada. 
2014 Copyright held by the Owner/Author. 
ACM 978-1-4503-2958-3/14/08 

Asynchronous BVH Reconstruction on CPU-GPU Hybrid Architecture

Jin-Woo Kim∗1 Jung-Min Kim1 MinWoo Lee1 Tack-Don Han†1

1Department of Computer Science, Yonsei University, Korea

1 Introduction
We present a CPU-GPU hybrid architecture with an extended asyn-
chronous bounding volume hierarchy(BVH) construction scheme
[Ize et al. 2007] for ray tracing dynamic scenes. Because the perfor-
mance of a ray tracer greatly depends on the acceleration data struc-
ture, it is necessary to efficiently update the AS of dynamic scenes.
To achieve this, Asynchronous BVH construction simultaneously
performs both BVH reconstruction and bounding volume(BV) re-
fitting. However, it may degrades the overall performance because
it exploits the CPU to simultaneously perform both the BVH con-
struction and rendering. To solve this problem, we improve this
multi-core-CPU-based scheme by utilizing a CPU-GPU hybrid ar-
chitecture. This hybrid approach is implemented based on [Aila and
Laine 2009]. It improves the performance by 254~303% compared
to a key-frame renderer implemented on NVIDIA OptiX.

Figure 1: CPU-GPU hybrid approach

2 Our Approach
In our architecture, the CPU only performs scene management and
BVH reconstruction, while the GPU performs BV refitting, triangle
preprocessing and rendering. The ray generation and shading are
processed with the same kernel in [Aila and Laine 2009]. To apply
the asynchronous BVH construction to our hybrid approach, other
processes are altered as follows.
BVH construction on CPU The CPU constructs the BVH using

interpolated vertices received from the GPU. A BVH update based
on refitting can degrade the tree quality. Thus, the CPU should
rebuild the tree as quickly as possible. To do this, the BVH recon-
struction utilizes a binned Surface Area Heuristic(SAH) algorithm,
which has an advantage related to the speed of the reconstruction
rather than the tree quality. This BVH construction eventually re-
sults in a deep tree that has only one primitive per leaf node to elim-
inate the loop for intersecting with primitives of each leaf node.
BVH conversion on CPU The constructed BVH is a typical
depth-first tree, and is not adequate for hierarchically parallelized
BV refitting. Thus, conversion to a breadth-first tree is needed. In

∗e-mail:jwkim@msl.yonsei.ac.kr
†e-mail:hantack@msl.yonsei.ac.kr

this conversion, range information is extracted from the leaf node
list and inner node list, which are required for the refit kernel. In
addition, the axis-aligned bounding box (AABB) in the BVH is
eliminated because it is updated in the refit kernel in the GPU, elim-
inating the need to contain it in the BVH in the CPU memory. Re-
moving the AABB from the BVH reduces the total amount of data
transfers between the CPU and the GPU by 87.5%.
Vertex interpolation on GPU To generate an intermediate frame
between key frames, the GPU interpolates the vertices in the cur-
rent scene and next scene, proportional to the execution time. This
process is very simple and proceeds rapidly in the GPU.
Triangle preprocessing/AABB on GPU With the interpolated
vertices, the GPU preprocesses triangles that is needed to accelerate
Woop’s intersection test. This process uses non-sequential memory
access. To improve this, triangle preprocessing and the AABB op-
eration, which have the same input, are performed simultaneously.
Bounding volume refitting on GPU The refitting kernel refits
the leaf nodes first, using the leaf node list. After that, it does inner
node refitting using the inner node list. A leaf node always contains
only one primitive, which eliminates the primitive-tracing loop and
subsequently increases the efficiency of GPU operations.

Scene(triangle) Rendering time(ms)
Ours NVIDIA Optix Intel Embree

FairlyForest(147K) 20.68 52.67 103.43
Dragon&Bunny(253K) 10.99 28.00 55.76
Breaking Lion(1.6M) 27.91 84.62 65.62

Table 1: Experimental results(primary+shadow rays), Resolution:
1920x1200

3 Results and Conclusions
Table1 lists the results1 of an experiment carried out using our pro-
posed method on a GTX780, i7-4770K 3.5GHz environment, utiliz-
ing the full Kepler kernel. Our CPU-GPU hybrid scheme improves
the performance of GPU-based OptiX and CPU-based Embree by
up to 303% and 507%, respectively.

References

AILA, T., AND LAINE, S. 2009. Understanding the efficiency of
ray traversal on gpus. In Proceedings of the Conference on High
Performance Graphics 2009, ACM, New York, NY, USA, HPG
’09, 145–149.

IZE, T., WALD, I., AND PARKER, S. G. 2007. Asynchronous
bvh construction for ray tracing dynamic scenes on parallel
multi-core architectures. In Proceedings of the 7th Eurograph-
ics Conference on Parallel Graphics and Visualization, Euro-
graphics Association, Aire-la-Ville, Switzerland, Switzerland,
EG PGV’07, 101–108.

NAH, J.-H., KIM, J.-W., PARK, J., LEE, W.-J., PARK, J.-S.,
JUNG, S.-Y., PARK, W.-C., MANOCHA, D., AND HAN, T.-
D. 2014. HART: A hybrid architecture for ray tracing animated
scenes. submitted to IEEE TVCG.
1The experimental results is used as a comparison data in [Nah et al.

2014]. The detailed experimental results are included in our technical re-
port(http://msl.yonsei.ac.kr/TR/msl2014-01.pdf).

http://msl.yonsei.ac.kr/TR/msl2014-01.pdf



