Visually Programming GPUs in VSL

Jefferson Amstutz*

Applied Technology Operation
SURVICE Engineering

Scott Shaw

Lee Butler
U.S. Army Research Laboratory

(a) Visual Programming Interface

(b) Ballistic Simulation

Figure 1: (a) Visual Programming Interface. VSL uses a visual programming interface (VPI) for constructing and running simulation
pipelines on massively parallel hardware. (b) Ballistic Simulation. VSL currently has nodes that implement a traditional ballistic simulation
pipeline. The above image (b) shows one of the visuals VSL can create to assess vehicle vulnerability.

1 Overview

The Visual Simulation Laboratory (VSL) is an ongoing, open-
source framework developed by the U.S. Army Research Labora-
tory and its collaborators to bring modern hardware and software
to a variety of DoD application domains. VSL is designed to trans-
form legacy work flows into immersive, physics-based simulation
and analysis tools.

2 Motivation

Modern simulation codes can be very complex and difficult to un-
derstand by both developers and end-users. VSL addresses this
problem by using a visual programming interface (VPI) for con-
structing and running simulation pipelines. This interface provides
two useful benefits for both developers and users alike. First, in-
sight into what a simulation code is computing on behalf of the
user helps to demystify results. Second, it is coupled tightly with
the rest of VSL’s 2D/3D visualization capabilities which makes it
easy to develop and run additions to existing simulation pipelines.

3 Initial Implementation

The pipeline model and VPI are implemented within VSL’s exist-
ing framework on top of Qt. VSL’s pipeline model contains the
relationship of computational nodes to be executed as a directed
graph. Each node along the pipeline represent a single, modular
element of the computation. Connections between nodes represent
intermediate data buffers passed to different stages of the compu-
tation. The view VSL implements is an interactive diagram of the
pipeline that can be modified by the user at run time.

VSL currently has nodes that implement a traditional ballistic sim-
ulation pipeline, which include nodes that use CUDA to compute:

1. Ray Tracing: Find multi-hit ray intersection points

2. Penetration: Propagate a threat along the ray intersections

3. Damage Assessment: Calculate the component probability
of kill given damage

4. Fault-Tree Evaluation: Evaluate the probability of kill for
interested systems of components

*e-mail: jeff.amstutz@survice.com

Figure 2: Computation Nodes. Nodes can easily be connected at
runtime to create multi-stage computations on-the-fly. Nodes can
be implemented with any available compute device or compute en-
vironment, such as CUDA and OpenCL.

5. Visualization: Create a visualization of the results

4 Future Work

While this work has seen recent success for flexible acceleration
of ballistic simulations, there are improvements we are seeking to
implement. Such improvements are optimization of data movement
between GPUs and the host, view based node encapsulation in the
UL and expanding node implementations beyond ballistics.

Acknowledgments
This work is funded in part by the US Army Research Laboratory.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for commercial advantage and that copies bear this notice and the full citation on the
first page. Copyrights for third-party components of this work must be honored. For all
other uses, contact the Owner/Author.

SIGGRAPH 2014, August 10 — 14, 2014, Vancouver, British Columbia, Canada.

2014 Copyright held by the Owner/Author.

ACM 978-1-4503-2958-3/14/08





