
Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for commercial advantage and that copies bear this notice and the full citation on the
first page. Copyrights for third-party components of this work must be honored. For all
other uses, contact the Owner/Author.
SIGGRAPH 2014, August 10 – 14, 2014, Vancouver, British Columbia, Canada.
2014 Copyright held by the Owner/Author.
ACM 978-1-4503-2958-3/14/08

A 3D Animation and Effects Framework for Mobile Devices

Vipin Patel

Samsung R&D Institute

Bangalore, India

vipin.patel@samsung.com

GBCS Tejaswi Vinnakota

Samsung R&D Institute

Bangalore, India

tejas.v@samsung.com

Soumyajit Deb

Samsung R&D Institute

Bangalore, India

soum.deb@samsung.com

Manjunatha R. Rao
Samsung R&D Institute

Bangalore, India

manju.r@samsung.com

1. Introduction
Of Late, mobile devices with OpenGL ES compliant graphics
processors have become all pervasive. However popular platforms
like Android do not support any form of power efficient 3D
content loading, animation or 3D interaction even though the
entire user interface system runs OpenGL ES under the hood. In
this work, we present a light weight, power efficient rendering
pipeline for enabling new innovative use cases of 3D data by
allowing art directed animation and effects created by an artist/UI
designer. We utilize the open spec Collada format to seamlessly
incorporate 3D geometry into user interface elements, skeletal
animated visualizations and interesting lock screen effects in a
lightweight manner.

2. System Design
Our system was designed to primarily solve two problems – (i)
Incorporating artist generated digital 3D content into every facet
of mobile graphics without significant programmer intervention
and (ii) Building a 3D pipeline that works upon a ‘Power First’
philosophy where power saving methodologies are built into the
pipeline from ground up. We build a super lightweight framework
to supply 3D content to any application or UI elements that may
request it. A commercial engine may be too large in memory
footprint, storage and power usage for such an application.
 We built this system as set of pluggable loosely coupled
modules around a scenegraph system. This would allow us to
package only the modules we require in a particular application –
saving space and reducing power consumption. The system
exposes a client API to an application to load a particular model
with its associated shaders and textures into a user defined scene
graph. The entire system then runs at a smooth and interactive
60fps on commodity mobile devices with an OpenGL ES 2.0
compliant GPU. One major challenge for low latency, real-time
performance was that loading XML based Collada files at runtime
is quite slow if the model is larger than a few thousand primitives.
To avoid this wait, we run an offline preprocessing step to convert
the Collada file into a simple binary file format. The parser
module runs on a desktop and may also optimize meshes to be
more power and performance friendly with mobile devices. On
the actual device, both power and load times are reduced
significantly by this optimization.

The scene graph module is the heart of the pipeline and
is responsible for most of the core functionality. The scene graph
system logically organizes data into various containers or
compartments segregated from each other to apply the optimal
data transport path right down to the GPU. For an example,
characters with skeletal animation rigs need to be evaluated very
differently from repeating geometry around the world which
could be instanced on the GPU for optimal rendering. The system
also allows 3rd party open source modules to be integrated.

3. Results
We built a wide variety of proof of concept demos using this
system. The use cases are varied – ranging from a skeletal
animated avatar as an overlay to assist the users, a virtual
character navigating a 3D maze, a key-frame animated scene of a
car crashing into a wall to an interactive lock screen effect where
the user must push billiards balls into respective pockets in the
table and a 3D text rendering system. The entire system was
written in C++ with OpenGL ES for rendering, accessible to a
Java Android application via the JNI interface. The footprint of
the compiled library is extremely small – in its entirety taking just
60kB of space on the device. We also measured the power
consumption, memory usage and size of the framework in various
scenarios and compared it to Unity Engine below.

 Effects Engine Unity

APK size(incl. textures) 963KB 8.77MB

Shared library (.so) size 66KB(1.so file) 180KB(3.so files)

Power consumption(avg.) 996mW 1189mW

Run time memory 8152KB 26736KB

Load Time 1.05 seconds 2.54 seconds

 Details of model used for comparison:

 Number of triangles: 7695

 Number of textures: 5

 Size of original collada (.dae) file: 1193KB

 Size of binary (proprietary): 725KB

4. Conclusions
We presented a lightweight, power efficient pipeline for rendering
art directed 3d content in various possible scenarios using the
open Collada format. Some future directions include
incorporation of motion capture data into skeletal animation and
also coming up with metrics to quantify an explicit relationship
between device power consumption and rendered data.

References:
Mochowski B, Lahiri K, Power analysis of mobile 3D graphics in
DAC '06: Proceedings of the 43rd annual Design Automation
Conference
Mochowski B, Lahiri K, Signature based workload estimation for
mobile 3d graphics In DAC '06 Proceedings of the 43rd annual
Design Automation Conference
Unity Game Engine – http://unity3d.com

System Architecture

mailto:vipin.patel@samsung.com
mailto:tejas.v@samsung.com
mailto:soum.deb@samsung.com
mailto:manju.r@samsung.com
http://unity3d.com/

