
Permission to make digital or hard copies of part or all of this work for personal or classroom use is 
granted without fee provided that copies are not made or distributed for commercial advantage and that 
copies bear this notice and the full citation on the first page. Copyrights for third-party components of this 
work must be honored. For all other uses, contact the Owner/Author. 
SIGGRAPH 2013, July 21 – 25, 2013, Anaheim, California. 
2013 Copyright held by the Owner/Author. 
ACM 978-1-4503-2261-4/13/07 

PhysPix: Instantaneous Rigid Body Simulation of Rasters

Domagoj Baričević, James Schaffer, Theodore Kim
University of California, Santa Barbara∗

Figure 1: From left to right: a) Terrain destroyed by erasing the ground bitmap, the rigid-body simulation is instantly updated. b) Some
example pixel normals - red pixels belong to the reference object, blue pixels belong to the colliding object, the purple center pixel represents
the actual intersection, white arrows show partial kernel normals, and the local pixel normal is shown in green. c) Two intersecting objects
(red and blue) and their intersection - critical pixels are highlighted in purple while gray pixels are not used to determine normal; local
normals for each pixel are shown in green, these are averaged to generate the surface normal for the collision.

1 Introduction

Modern physics engines process collisions by leveraging vector
representations (e.g. Box2D or Open Dynamics Engine (ODE)),
which means that artists who work with pixel-based 2D content
must map their pixel drawings onto representations such as De-
launay triangulations [Shewchuk 1996]. Effects such as destruc-
tion then require remeshing, which can be onerous to perform at
runtime. The alternative is pixel-perfect collision handling, but
past games such as Worms! and Scorched Earth that use this ap-
proach have not attempted true rigid body simulations. We present
PhysPix, a 2D rigid body simulation framework based on pixels.
PhysPix allows 1) artist control over the exact boundaries used for
objects in the simulation, 2) natural bitmap-based support for de-
struction, and 3) an intuitive painting interface for properties such
as non-uniform weight distributions.

2 Approach

PhysPix asks artists for a single bitmap for each object, and uses
this bitmap ‘as-is’ in the rigid body simulation. The challenge lies
in extracting the components needed for rigid body response (sur-
face normal, penetration depth) from arbitrary bitmaps. Sequential
computation can be expensive, even for simple cases.

Weight distribution and collision geometry - information that de-
termines the behavior of a rigid body - are naturally encoded into
a bitmap for 2D objects. The minimum amount of information re-
quired from the artist is the sprite that represents the object graph-
ically, but the artist can also additionally specify two optional
bitmaps: the collision mask, and the weight distribution mask. By
default PhysPix will use the alpha channel of the sprite to deter-
mine the collision shape of the object, the collision mask can be
used to override this shape with a custom one. PhysPix computes
the center of gravity and inertia tensor from the supplied bitmaps.
By default this information is extracted from the alpha channel of
the sprite (or the collision mask), but can be be optionally extracted
from the weight distribution mask. PhysPix’s default method treats

∗e-mail: {domagoj, james schaffer}@cs.ucsb.edu, kim@mat.ucsb.edu

each opaque pixel in the sprite as unit mass. If the weight distribu-
tion mask is specified, each pixel is assigned a relative mass based
on the intensity of its color. Using the explicit method allows a con-
tent creator to intuitively specify the precise weight distribution of
any object in any arbitrary way - a feature which is more difficult to
expose in a vector-based engine.

In image processing, the task of summarizing bitmaps has been
well studied and is known to easily map onto parallel processors.
By processing bitmaps in parallel using compute shaders, PhysPix
makes the dynamic extraction of normal and depth from intersect-
ing bitmaps practical for real-time simulation. At runtime, PhysPix
processes collisions between bitmaps on the GPU and uses a 2D-
configured ODE for its rigid body simulation. At the time of col-
lision, the intersecting bitmap (collision raster) is thrown onto the
GPU to determine the collision’s normal, depth, and approximate
location. The location of the collision is simply the collision in-
tersection’s center of mass. For each pixel in the collision raster,
a local normal is generated by inspecting a 3x3 kernel centered at
the pixel (Fig 1b). Only the pixels on the surface of the collision
(critical pixels) generate local normals that are useful. For each
critical pixel, the local normal is generated by inspecting the pixel’s
8 possible neighbors. This method gives a normal for each pixel on
the surface of the collision (Fig 1c). Local normals are averaged
into the global normal for the collision raster. The global normal is
then leveraged to determine the depth of the collision: the collision
raster is rotated so that the normal is aligned with the rows in the
bitmap, then the GPU is used to find the maximum of these rows
which corresponds to the depth of the collision.

PhysPix enables fully destructible environments on the individual
pixel level. Since all collisions are represented as raster intersec-
tions, updating the collision geometry is a simple matter of updating
the bitmap representing the object or environment (Fig 1a).

References

SHEWCHUK, J. R. 1996. Triangle: Engineering a 2d quality mesh
generator and delaunay triangulator. In Applied computational
geometry towards geometric engineering. Springer, 203–222.


