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1 Introduction 
In computer graphics and in computer-aided design one often 
needs to draw a smooth connecting line between two points on a 
smooth surface. The most direct such connection is a geodesic 
line. While it is easy to trace a geodesic ray on a smooth surface 
or on a finely tessellated polyhedral approximation thereof, it is a 
well-known hard problem to connect two points with the shortest 
geodesic path on a surface that exhibits many areas of positive 
and negative mean curvature. 

Sometimes the geodesic line segment is too restrictive for design 
purposes; it offers no degrees of freedom or adjustable parameters 
to the designer. This limitation is particularly detrimental when 
multiple lines must radiate from the same point. In this situation a 
designer would like to have some control over the initial tangent 
directions of these lines, perhaps to distribute them at equal angles 
around the point from which they emerge. For this purpose, a 
good alternative is a line for which its geodesic curvature is either 
constant or varies linearly as a function of arc length, like a 
Clothoid in the plane. Such lines with linearly varying curvature 
(LVC) offer the designer two parameters: the values of geodesic 
curvature at either end of the line segment. These can then be used 
to set the tangent directions at the two end-points (similar to the 
controls available in a Bézier curve in the plane). We have 
developed a scheme to efficiently calculate a good approximation 
to such LVC-curves on subdivision surfaces. 

We will illustrate the use of this technique with an example from 
mathematical topology concerning a crossing-free embedding of a 
graph on a surface of a suitably high genus. For instance, “K12” , 
the complete (fully connected) graph of 12 nodes, requires a 
genus-6 surface for an embedding with no crossings, and the 66 
edges of this graph will then divide the surface into 44  3-sided 
regions. To make pleasing-looking, easy-to-understand models of 
this partitioned surface, we want to make all edges as “ fair”  as 
possible, that is, keep them nice and smooth with no unnecessary 
undulations. At the same time we would like to have the edges 
more or less evenly distributed around the nodes where they join. 
LVC-curves offer just the right amount of control for our purpose.  
 

2   Our Approach 
The designer starts by constructing a coarse polyhedral model of 
the needed genus-6 surface as shown in Figure 1a. Choosing 
oriented tetrahedral symmetry for this surface and exploiting this 
symmetry to the fullest, the user only has to construct 1/12 of the 
surface, which can easily be done with 9 quads or 18 triangles. 
The complete surface is then constructed by composing twelve 
copies of this fundamental domain with suitable rotations. On this 
surface, the user now places the nodes of the graph and draws 
piecewise linear connections between them. If the graph also is 
given the same tetrahedral symmetry, then this work need be done 
only on the fundamental domain, i.e. on 1/12th of the surface. 

Our algorithm starts from this linear model. The triangle or quad 
mesh is the basis of a Loop or Catmull-Clark subdivision surface. 
The polygonal paths between nodes will be converted into LVC-
curves. The two refinement processes occur in parallel. For each 
generation of the subdivision process, each piecewise linear path 
is modified so as to approximate an LVC curve segment. 

    
Figure 1.  (a) Initial piecewise linear paths on polyhedral model. 

(b) Final optimized LVC curves on subdivision surface. 

Towards this goal, the vertices where the paths cross over the 
edges of the control mesh are moved with a gradient descent 
method to approach the desired LVC-behavior (Figure 2). 
Specifically, each such vertex is moved along the edge on which it 
lies so as to drive a discretized estimate of geodesic curvature at 
that point towards the mean of the geodesic curvature values at 
the two neighboring points on that path. A few dozen iterations of 
this optimization step are typically sufficient. After this curve 
optimization process has converged, the surface is subjected to 
another subdivision step. All linear path segments across any facet 
in the mesh are then split at the new subdivision edges, and all the 
path vertices are subjected to the curve optimization process 
again. This general process loop is repeated until the desired 
degree of refinement has been reached. The technique works with 
any of the popular surface subdivision schemes. 
 

 
Figure 2.   Optimizing a discretized LVC curve linking S and T; 

green is the original path, red is the optimized path. 
 

3   Results 
The result of this process for the embedding of the K12 graph on a 
genus-6 surface of tetrahedral symmetry is shown in Figure 1b. 
The LVC curves have been enhanced to black bands to make 
them more visible, and the nodes of the graph are shown as small 
hemispheres. The 44 resulting 3-sided facets between the edges 
have been colored randomly. Thus we are able to provide a crisp 
visualization model for this difficult graph-embedding problem. 

For a computer-graphics audience, the colored facets can be made 
of translucent material, and light bulbs can be placed inside the 
four tetrahedral corners as well as the center of this object, so that 
an intriguing looking “Tiffany Lamp” of genus 6 results. Stunning 
visual effects are achieved by subjecting this geometry to various 
computer graphics rendering techniques.  


