
Real-Time Skin Rendering on Graphics Hardware
Pedro V. Sander* David Gosselin† Jason L. Mitchell‡

ATI Research ATI Research ATI Research

1. Introduction
We present a real-time algorithm for skin rendering which was
used in the real-time animation Ruby: The DoubleCross, appear-
ing in this year’s SIGGRAPH animation festival. Our approach
approximates the appearance of subsurface scattering by blur-
ring the diffuse illumination in texture space using graphics
hardware. This approach, based on the offline skin rendering
technique proposed by Borshukov and Lewis, gives a realistic
look and is both efficient and easy to implement. We describe
algorithms to efficiently implement this technique in real-time
using graphics hardware, as well as several enhancements to
improve quality.

2. Texture-space skin rendering
The algorithm proceeds as follows:
1. Render diffuse illumination to a 2D light map
2. Compute and store shadows in the light map
3. Blur the light map
4. Render final mesh using the blurred 2D light map to pro-

vide diffuse illumination
Steps 1 and 4 are straightforward to implement using pixel
shaders and renderable textures. We will describe how to com-
pute shadows and how to perform the blur operation. Finally,
we will describe additional acceleration techniques.

3. Soft shadows
Using this texture-space skin rendering technique, the computa-
tion of soft shadows is relatively inexpensive. A shadow map
algorithm is used to determine visibility from the light, and
texels in the diffuse light map are dimmed accordingly. The blur
operation performed in step 3 will not only create the appear-
ance of subsurface scattering, it will also provide soft shadows
at no additional cost. The blur pass also significantly reduces
aliasing, making it practical to use the shadow map algorithm.
Translucent shadows. Translucent shadows can be com-
puted using a hybrid projective shadow algorithm. For example,
to compute translucent shadows of the hair on the skin, we
render the character’s hair to the shadow map after the face has
been rendered. We turn on the z test, but we turn off z writes.
We write the colored opacity to the RGB buffer with additive
blending (The z value for the opaque shadows can be stored in
the alpha channel.) Then, when computing the shadows from the
shadow map, if the sample is not shadowed by an opaque object,
its diffuse contribution is attenuated by the value in the opacity
values stored in the RGB channels.
Shadows on specular illumination. Since it is fairly
expensive to perform an independent blur pass for the shadow
component, we cannot independently apply shadows to the
specular illumination. We have found, however, that the lumi-
nance of the blurred light map can be used to attenuate the
specular term of the shadow casting light to obtain a natural
look.

* E-mail: psander@ati.com
† E-mail: gosselin@ati.com
‡ E-mail: jasonm@ati.com

4. The Poisson disc blur
We implemented the blur operation in hardware by using a pixel
shader that applies a variable sized Poisson disc filter to the
character’s skin light maps in texture space. Using two tempo-
rary buffers, we performed several blurring passes on the diffuse
illumination in order to achieve a soft, realistic look.
Variable kernel size. The kernel size used by our filter can
vary in texture space. A scalar multiplier for the kernel size is
stored in an 8-bit texture. Borshukov and Lewis addressed
translucency on the model’s ears by ray-tracing. We cannot
afford to do ray-tracing in real-time, but we obtain a similar
result by increasing the kernel size on the region around the ears.
Texture boundary dilation. In order to prevent boundary
artifacts when fetching from the light map, the texture needs to
be dilated prior to blurring. We needed an efficient real-time
solution to this problem. We accomplished this by modifying the
Poisson disc filter shader to check whether a given sample is just
outside the boundary of useful data, and if so, copy from an
interior neighboring sample instead. We only need to use this
modified, more expensive filter in the first blurring pass.

5. Additional acceleration techniques
In order to optimize our technique, we employ hardware early-z
culling to avoid processing certain regions of the light map.
Frustum culling. Before the blurring step, we clear the z
buffer to 1 and perform a very simple and cheap texture space
rendering pass in which we just set the z value to 0 for all
rendered samples. If the bounding box of the model’s head lies
outside the view frustum, it is culled by our graphics engine, and
thus the z value is not modified. On all further texture-space
passes, we set the z value to 0 and the z test to “equal”. This
ensures that if the model lies outside the view frustum, hardware
early-z culling will prevent all samples from being processed.
Backface culling. Backface culling can be performed by first
computing the dot product of the view vector and normal. Then,
if the sample is frontfacing, a 0 is written to the z buffer, thus
culling the sample in all further passes.
Distance culling. If the model lies far from the camera, the z
value is set to 1, and the light map from the previously rendered
frame is used. Note that this does not affect specular lighting.

References
BORSHUKOV G. AND LEWIS, J. P. 2003. Realistic Human Face Render-

ing for “The Matrix Reloaded”. Sketches, SIGGRAPH 2003.

