
������� �	��
��������������������������� �!��"$#&%'#)(*���!��
,+-���/.102�3�
Matrix: Revolutions

Charles Rose 4
Tippett Studio

5 687	9;:=<?>A@CBD9�EF<A7

The development and production of The Matrix Revolutions’ ma-
chine city sequences were challenging on most every front. From
the beginning, the machine city had been described as a huge living
fractal / coral reef, twice the size of the greater LA basin, alive in
every aspect: building itself on the fly, swarming with inhabitants,
alive with lighting, electrostatic events, and atmospherics. Even the
massive towers were alive in their slow purposeful movements as
they tracked events within the city. How were we to design, layout,
build, and render such a city, without a map?

Figure 1: Machine City key art

G HJIKI	:L<NM	BPO

The scale and complexity of the city led us to use a combination
of techniques: a procedural growth system for a base, combined
with hand dressed building and towers used for larger details and
areas close to camera. The first step was to build shared libraries
of component pieces, building blocks that could be combined either
procedurally, or by hand to grow potentially thousands of variations
of buildings. These libraries were categorized by building type, so
that in general one would build from components within the appro-
priate library, which included ground, tower, magma pit, power ca-
bles, and city block libraries. Each library was built to four different
resolutions: high, medium and low resolution nurbs models were
intended for rendering at the appropriate LOD, and extremely low
res polygonal models were constructed for layout and visualization
inside of maya. All library components had to be built conforming
to specific rules to ensure that they would be properly animated and
swapped out at render time for the proper resolution. The proce-
dural aspects of the layout evolved considerably over time. Early
versions used texture maps to control what type of buildings be-
longed in a particular neighborhood, as well as parameters such as
density, height, width and the number and size of tower branches.
Fx Lead Dan Rolinek’s final implementation of the procedural city
grew builder curves along paths. These curves carried all pertinent
information about the buildings to be grown, and particles dropped
from the curves to the surface would birth individual building com-
ponents. Force fields were then added to control which direction
to bend the towers and how to orient ground buildings to create the
organically grown look we desired. Hand dressed buildings were
built using the very same component libraries, using similar rules.
These conventions allowed animation applied on the appropriate
nodes to be inherited by RIB archives. Since most camera moves
were relatively small compared to the scale of this massive city, we

Q
e-mail: rose@tippett.com

were able to hardwire archive resolutions into the scenes with sim-
ple grouping and naming conventions, rather than worrying about
tuning procedural LOD settings.

R S�TU7C>NTN:LE�7PV

All library components were processed into individual render-
man RIB archives which would be shared by all shots and pro-
cesses. Since these archives had to incorporate multiple reiter-
ations of modeling and shading changes, a carefully constructed
workflow was essential to ensure that this part of the pipeline
would keep up with the many changes look development re-
quired. All RIB archives were called from the master RIB by
using DelayedReadArchives, whose ability to load archives into
memory only when visible was the only possible way to render
this kind of heavy dense material. Our initial problems with De-
layedReadArchive were centered around being to able to edit spe-
cific shading parameters on the fly at render time. This was im-
portant as there were many animated reflection maps in surfaces,
many of which were shot and frame specific, e.g. lightning flashes
in the sky and city would be projected back into buildings as an-
imated reflection maps. Our solution was to edit ”user” attributes
in the master RIB at render time to pass messages to shaders in
the RIB archives that had been written to accept the appropriate at-
tribute messages. Arbitrary output variables were used extensively
in the rendering; usually some 18 variables were output in addi-
tion to the main render. Typical stream outputs would include not
only such standard shading outputs as diffuse and specular, but spe-
cific LightSource lighting group components, several different re-
flection passes, z depth, y depth, per building masks based on a
user attribute, and masks based on textures for glows and biolumi-
nescence.

Figure 2: Final Composite

W X <A7CBZY[@	\]EF<A7

Carefully laying the groundwork of well organized libraries in the
beginning of the process allowed us to determine on a shot by shot
basis how much to rely on procedurally placed components versus
hand dressed architecture, without worrying about shifts in any as-
pect of the look. The reliance on either approach could be varied
shot to shot, depending on the larger context, without disrupting
the overall look. Creating a rich stream of output variables from the
shaders allowed us to modify many of the shading components in
the final composite.


