
Building Crowds Of Unique Characters
David Prescott Darren Hendler Dave Hodgins David Blumenfeld
Spencer Alexander Leonardo Szew Adam Sidwell Manny Wong

Erick Miller
Digital Domain

Introduction
Constructing realistic shots with hundreds, or even thousands of
completely unique, fully animated, deforming, and realistically
shaded characters poses an entirely different challenge than the
traditional character pipeline. Workflow, Level of Detail (LOD),
and current hardware/software limitations require unique
solutions to achieve the goal of a usable crowd animation and
rendering suite. Although the system described in this sketch was
initially developed and used specifically for the blockbuster
effects film, The Day After Tomorrow, at the time of writing this,
it has also been successfully used in 3 feature length films, and
one commercial.

Publishing Procedurally Created Characters
Generating a crowd of characters begins with the �Character
Creation Kit�. Leveraging concepts learned from The Grinch, we
created a modular system for slider and enumerated data type
based character generation. The users change modifiable
attributes such as: type, sex, height, weight, race, clothing, neck
and leg length, textures, etc. Once users are happy with the
character they have generated, they choose to publish the
character into a defined character database. All of the data
necessary to procedurally re-create that character is saved as
separate swappable components of a published character.

Unique Characters, Generic Animation
The characters that are published are seemingly unique characters.
For example, characters could span from being short fat women in
skirts, to broad shouldered bipedal robots. Although extreme
variation is possible, the crowd system is built to apply all the
same motion from the library onto all possible character varieties.
This is achieved through an intrinsic retargeting system built into
the character definition, which uses a simple mix of additive,
multiplicative and driven weighted interpolation to modify the
motion as it is applied to varying degrees of different characters.
The animation is stored in a non-linear format, and therefore can
be very simply applied and filtered through any computational
graph prior to its final output.

Multiple Levels Of Characters
The base character definition is encapsulated into a very small set
of fast DAG nodes. Specifically there are two matrix transforms,
a curve path and a node that contains all of the inputs for a
character�s animation. A small node network exists to re-map the
character�s forward z-axis translation into the parameter space of
a NURBS curve, which is then normalized by the curve length,
and multiplied by a constant based on the leg length. The
character then has 3 LODs that can be applied for viewing or
rendering in varying details. An additional system was added for
using mapped camera aligned planes for more distant low LOD
shots.

Populating Scenes
The act of populating a crowd scene is a very simple process of
painting them into the scene. Painting crowds of characters is both
a fun and novel approach to populating, as it is fast and easy to

change density, and area, while still maintaining control over
placement. Characters are chosen randomly and slightly jittered
to give a random feeling to their layout. Additional population
options are available, such as placing directly onto points in the
scene, or along predefined velocity paths.

Animating Crowd Motion
Crowd motion, as previously explained is encapsulated as
nonlinear clips. The most vital aspect of animation application
and editing in a crowd scenario is the ability to reference and
instance data. A system is therefore built for referencing the clips
from disk, and instancing the curves onto the characters so that no
�real� animation data ever exists in the scenes. The animation can
then be updated, and the crowd scene automatically updates. Each
additional level of detail also has the unique ability to animate on
top of, or partially over the motion clips, and the system saves and
restores this as data if the LOD is loaded/unloaded.

Dynamic Aspects
An interesting thing about dynamically derived motion in a real
production environment is that it must remain editable and
capable of art direction at all times. So, the system was built to
allow placement of characters, and dynamic application of motion
on either the front-end of the system, or post � after animation has
already been applied. The possible dynamic inputs to the
characters consist of three separate components.

1.Initial curve path generation, with per frame velocity float
data (i.e., seek and follow, avoid, boids, etc.)

2.Post �pass� based character collision avoidance for fixing
minor collisions in already animated crowds.

3.Attribute based clip editing of associated clips using
triggered attributes that represent events for
predetermined associated motions.

Rendering Scenes
Rendering crowds of characters without splitting them up into
separate scenes poses an interesting challenge. Luckily, Prman�s
procedural call gives us exactly the behavior we need. The crowd
characters are sent to the farm to be RIB archived, distributed by
number of characters per CPU, with user defined granularities,
and then re-ordered into custom RIB files sorted by frames in
time. A C++ RIB parsing class was constructed and written into a
procedural run program, which used gzip, diff, patch, and various
RIB keyword based logic around I/O streams for parsing in non-
deforming transforms and surface calls from a master rib into the
archived ribs. The final 3d scene used for lighting is a fast
interactive file containing all the characters as moving cubes,
which when rendered, output the procedural calls into the rib
stream to pass the characters to Renderman (as opposed to passing
the cubes). The source RIB for any particular character can be
updated and all the surface calls and non-deforming geometry get
swapped in at run time by the procedural RIB generator program.
The result is an editable rendering pipeline that uses very little
disk space or system resources.

