
Wrangling Lighting and Rendering Data at Disney Feature Animation

Mark A. McLaughlin
Mark.McLaughlin@disney.com

Joseph M. Lohmar
Joe.Lohmar@disney.com

Ernest J. Petti
Ernest.Petti@disney.com

Lewis Wakeland
Lewis.Wakeland@disney.com

Chris Springfield
Chris.Springfield@disney.com

Walt Disney Feature Animation

1 Introduction

The amount of data that can comprise a shot in an animated CG
feature film is tremendous. All of this data must be assembled into
a scene by our Shot Finaling department, where lighting and final
rendering takes place. The data arrives in many formats and at dif-
ferent stages of completion, necessitating a system that can assem-
ble new scenes and update existing scenes easily. In addition, the
intricate manner in which various parts of the scene relate to each
other varies with the action being performed and must be tracked.
We present a user-friendly system for wrangling scene data and re-
lationships, which serves as the foundation for our internal lighting
package, Lumiere, currently in use in production on Chicken Little.

2 System Overview

Data in a scene is broken down and organized by types, such as
cameras, lights, materials, geometry, bindings, etc. Related items
of the same type are grouped together and stored in data contain-
ers. Containers also maintain the methods and information needed
to import, export, update and render their data. Data containers are
controlled by data container managers which manage all contain-
ers of the same type. Every data container manager is tracked by the
Data Container Manager Registry. An element in a scene (say a
character) is comprised of a collection of data containers, which en-
capsulate the element’s geometry, materials and bindings. The Re-
lationship Manager handles associations between these containers
and also knows how each element is constructed and how to import
the appropriate containers for the element. The Render Manager
is used to render scenes by causing the necessary containers to ex-
port their data and invoking the render action. The system has been
implemented in Alias’ Maya using the C++ API for speed, with a
corresponding MEL interface.

3 Data Organization Details

The data container is the basic unit of organization. All managed
scene data is stored in data containers. Data containers are imple-
mented as Maya dependency nodes. Although a data container can
be any type of dependency node, most are object sets. The system
is able to incorporate “outside” packages (such as our fur/hair sys-
tem) via methods that transform the existing data into containers so
the two systems can coexist. Information related to a data container
is stored in attributes of the data container node and associations
between containers are defined via attribute connections. In this
way the data management organizational information is persistent.
Since all data containers share a common interface (attributes and
methods), new data types can be easily added to the system. This
provides for future expansion as additional needs arise.

All of the data containers of the same type are controlled by a sin-
gle data container manager. Container managers are implemented
as Maya object sets with associated information stored in attributes
of the set nodes. Each manager has a method for importing a data
file of the proper type and placing the imported data into a con-
tainer. The data in a container can also be swapped out with other
data. Each data container manager has a default container which
is automatically created and used to store newly created (hence un-
managed) data. There are methods for converting existing scenes

into “managed” scenes by automatically sorting out all scene data
and placing it into default containers. Methods also exist for con-
verting scenes from any previous version of the system to the cur-
rent version.

The Data Container Manager Registry keeps track of all of the ex-
isting data container managers. It can be queried for a list of current
managers which in turn can be queried for lists of existing contain-
ers. Thus all managed data can be accessed via the registry.

All managed data is tracked by the system and any change to the
data will cause its container to become “dirty”. This will also no-
tify all other associated containers of the change. Only dirty con-
tainers need to be exported (to transfer the data or render the scene),
improving the efficiency of the system. Similarly, if a container is
“locked”, its data is not exported for rendering; rather a preexisting
render data file is used. This allows the data in the live Maya scene
to be decoupled from the data used for rendering, making it possi-
ble, for instance, for the Maya scene to contain light-weight proxy
geometry.

4 The Relationship Manager

The Relationship Manager is an abstract layer above the data con-
tainers which builds a hierarchical view of the scene from a config-
uration file and defines groups and their associated containers. This
view of the data management system gives the artists the ability to
switch between different looks and easily turn elements on or off
for rendering. The user can interact directly with the Relationship
Manager’s graph or use a selection mechanism which allows them
to choose by name, group type, or data container type.

The figure below shows the hierarchy of a relationship view for
a scene and the corresponding rendered image. Checked objects
represent “enabled” containers (which are visible in the render) and
unchecked objects represent “disabled” containers that still exist in
the scene. Unchecking at the element level disables all the child
containers. Switching the look for an element would turn off all the
containers associated with the old look and turn on all the containers
for the new look. There are also a set of MEL commands that allow
users to process the groups on the Maya command line or through
other scripts.

c© Disney

Special thanks to Dean Edmonds of Gooroos Software for his con-
tribution to this project.


