
UberFlow: A GPU-Based Particle Engine

Peter Kipfer, Mark Segal, Rüdiger Westermann
Computer Graphics & Visualization, Technische Universität München∗, ATI Research†

Abstract

We present a system for real-time animation of large particle sets
using GPU computation and memory objects in OpenGL. Our sys-
tem implements a versatile particle engine, including inter-particle
collisions and visibility sorting. By combining memory objects
with floating-point fragment programs, we have implemented a par-
ticle engine that entirely avoids the transfer of particle data at run-
time.

1 Introduction and Previous Work
In current particle engines, both the dynamics module and the col-
lision module are run on the CPU. In [Govindaraju et al. 2003],
the GPU has been used to implement specific parts of the colli-
sion module while [Knott et al. 2003] confined the collision to a
particular object type. This conventional assignment of functional
units to processing units reveals the limitations of current graphics
processors. In this work, we demonstrate how to overcome this as-
signment, yet providing a particle engine amenable to physics based
simulations.

2 Exposition
For high resolution particle sets the transfer of these sets for render-
ing purposes has to be avoided. Therefore, simulation of particle
dynamics must be performed on the GPU. In this sketch, we present
novel approaches to carry out particle simulation in the fragment
units of programmable graphics hardware. Built upon an improved
GPU implementation of a sorting network, we have implemented
inter-particle collision detection and visibility sorting of hundreds
of thousands of primitives. In combination with OpenGL memory
objects, we present the first particle engine that entirely runs on the
GPU and includes such effects.
2.1 Sorting
Our engine either resolves inter-particle collisions and renders the
particles as opaque primitives or it sorts particles according to their
distance to the viewer and renders the particles as semi-transparent
primitives. Both scenarios rely on the sorting of particles.

We present a novel vertex and fragment program sorting routine
that is far faster than previous implementations [Purcell et al. 2003].
A two-stage sorting pipeline consisting of parallel geometry and
fragment units sorts about 3 million keys and identifiers per sec-
ond. Our routine exploits fragment and geometry processors, and
it avoids expensive on-chip computations in the comparator stages
by using pre-computed per-vertex attributes. We further pack con-
secutive sorting keys and identifiers into RGBA texture values, thus
exploiting internal parallelism and bandwidth.

∗kipfer@in.tum.de, westermann@in.tum.de
†segal@ati.com

2.2 Collision Detection
The GPU collision detection module simultaneously computes for
each particle an approximate set of potential collision partners in
the fragment units. Only the closest one is kept and used as input
for the collision response module, where collision impulses are ap-
plied in parallel to every particle. In situations involving multiple
collision events this can lead to incorrect dynamics, because colli-
sions that are caused by the current update can not be resolved in
the same time step. In this case, time-sequential or simultaneous
processing of collision events gives more plausible results, but both
techniques can not easily be mapped to graphics hardware.

3 Rendering
Our method relies on computing intermediate results in the GPU,
saving these results in graphics memory, and then sending them
through the GPU again to obtain images in the frame buffer. Our
implementation exploits a feature of recent ATI graphics hardware
that allows graphics memory to be treated as a render target, a
texture, or vertex data. This feature is presented to the applica-
tion through an extension to OpenGL called SuperBuffers. Up-
dated particle attributes like position and velocity are simultane-
ously rendered to separate SuperBuffer render targets using the
ATI draw buffer extension. These targets are then directly used
as input to the geometry units.

4 Conclusion
In this sketch, we present the first GPU particle engine that features
inter-particle collision detection and visibility sorting, and does not
require any transfer of particle data at run-time. With regard to per-
formance, the proposed implementation significantly improves pre-
vious work thus enabling realistic animation of large particle sets.
Our system can move up to 120 million particles per second and
processes up to 1 million particles per second with full inter-particle
collision detection.

References
GOVINDARAJU, N., REDON, S., LIN, M., AND MANOCHA, D.

2003. Cullide: Interactive collision detection between complex
models in large environments using graphics hardware. In Pro-
ceedings ACM SIGGRAPH/Eurographics Conference on Graph-
ics Hardware.

KNOTT, D., VAN DEN DOEL, K., AND PAI, D. K. 2003. Parti-
cle system collision detection using graphics hardware. In SIG-
GRAPH 2003 Sketch.

PURCELL, T., DONNER, C., CAMMARANO, M., JENSEN, H.,
AND HANRAHAN, P. 2003. Photon mapping on programmable
graphics hardware. In Proceedings SIGGRAPH/Eurographics
Workshop on Graphics Hardware, ACM, 41–50.


