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1 Introduction 
It can be argued that an ideal surface design system should allow a 
designer to specify all the boundary conditions and constraints 
and then provide the “best” surface under these circumstances. 
“Best” in this context may mean an optimization with respect to 
some intrinsic surface quality expressible in a functional or 
procedural form. For instance, the designer may want to minimize 
surface area (i.e. bending energy), variation of curvature, or some 
other aesthetically motivated functional. Systems that optimize 
such functionals have been demonstrated in the past, but in most 
cases, the optimization algorithm was too complex and too slow 
to provide the desired, almost instantaneous, and truly interactive 
surface optimization. 

As our basic framework, we use subdivision surfaces to represent 
the shapes to be optimized. Using finite differences based on 
incremental movements of the control vertices, a gradient vector 
for the chosen cost/energy functional is obtained and then used to 
evolve the surface iteratively towards a local cost minimum. After 
obtaining the minimum energy surface for a given mesh 
resolution, the mesh is subdivided to produce new vertices and 
therefore new parameters for optimization. In this framework of 
subdivision followed by geometric optimization, we can vary the 
methods for calculating the actual optimization moves, trading off 
accuracy for speed.  
 

2   Exact Evaluation 
As a baseline to compare the various methods we use exact 
evaluation of the subdivision surface, sampling the limit surface to 
obtain its geometric properties. Using differential geometry and 
numerical integration by Gauss-Legendre quadrature, we can 
compute a cost functional such as the bending energy with high 
accuracy. Using this energy computation in the above framework, 
we have obtained robust results that agree with the theoretically 
known energy minima for some highly symmetrical smooth 
surfaces, such as spheres, tori, or the known energy minimizers of 
higher genus [Hsu et al. 1992]. Since numerical integration and 
gradient calculations are computationally expensive, this method 
may take a few hours for surfaces like those depicted in Figure 1. 
However, it serves as an excellent benchmark for evaluating the 
following more approximate methods.  
 

3   Discrete Approximation of Cost Functional 
The first simplification calculates an approximate cost functional 
directly from the discrete mesh of control points of the 
subdivision surface as done, for instance, in [Desbrun et al. 1999]. 
We have used vertex-based and edge-based MES functionals that 
express the surface energy as a summation over the local energy 
at all vertices or edges, using polynomial expressions of vertex 
coordinates and/or dihedral angles along the edges. These 
discretized functionals are adequate to guide the gradient descent 
process into the same direction as a more exact functional 
evaluation would, but do so at significantly reduced cost and thus 
with higher speed. For various test cases of surfaces, ranging from 
spheres to more complex surfaces of genus 3, we have compared 
the shapes (Fig.1a) obtained with the discretized functional in 
mere minutes to the previously calculated “benchmark” shapes, 
and we found the results to be in very good geometric agreement. 

 

  
Figure 1.   Genus 3 surfaces obtained by minimizing discretized 

bending energy (MES) {a}, and by aiming for  minimum variation 
of curvature (MVS) with direct vertex-move calculations {b}. 

 

3   Direct Vertex Move Calculations 
The second simplification avoids the gradient calculation based on 
finite differences. Instead we calculate directly the moves for the 
control vertices that will optimize the surface in the desired 
direction. In particular, we have developed a vertex-move 
procedure that aims to minimize the variation of curvature as 
attempted by [Moreton and Séquin 1992]. For this purpose, we 
calculate, for each edge in the control mesh, a change in the 
turning angle in the direction of the edge and then aim to swivel 
the edge about a point on it so as to reduce this turning variation. 
Each vertex obtains a suggested move component from every 
edge attached to it, and is then moved proportional to the mean of 
these components. Figure 1b shows a surface obtained by this 
direct method; the shape is very close to the MVS shape found by 
[Moreton and Séquin 1992] after many hours of computation, but 
now it can be generated interactively in just a few seconds! 
 

4   Conclusions 
We are able to gain significant speedup by using discrete 
functionals and direct vertex-move calculations without 
compromising the final shapes obtained. Thus we can envision a 
CAD system in the not-too-distant future, where the designer 
specifies boundary conditions and constraints, and then picks one 
of several cost functionals to quickly optimize the surface with. 
The designer may then compare and contrast the results of two or 
three different aesthetic functionals and chose the one that seems 
most appropriate for the given application domain. 
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