
Quick, Unconstrained, Approximate L-Shape Method

K. Edum-Fotwe1,2, P. Shepherd1, M. Brown1, D. Harper2, R. Dinnis2
1University of Bath 2Cityscape Digital

Figure 1: Overview of the simple 2D shape approximation function - QUALM : (from left to right) the input points, the minimal area bounding
box, then reducing error by ’eating-away’ corners, and finally the output polygon (with alternative eat-away corner types illustrated below).

Abstract

This simple paper describes an intuitive data-driven approach to
reconstructing architectural building-footprints from structured or
unstructured 2D pointsets. The function is fast, accurate and un-
constrained. Further unlike the prevalent L-Shape detectors predi-
cated on a shape’s skeletal descriptor [Szeliski 2010], the method is
robust to sensing noise at the boundary of a 2D pointset.

Keywords: Shape Detection, Hough Transform, Eat-Away Hull

Concepts: •Computing methodologies→ Shape modeling;

1 Introduction and Motivation

The context of this work is the automatic recovery of clean (sparse)
architectural geometry from various types of laser scan. In particu-
lar this operator aims to recover compact building footprints - that
can be used for updating 2D-maps and for 3D urban modelling.

The method applies a simple observation about the nature of com-
mon rectilinear forms, in order to ’eat-away’ at a minimal-area
bounding box of a cluster of 2D points. One of the key benefits is
determinism. Each ’eat-away’ hull represents a repeatable product
of the input-points. Another key benefit is resolution independence,
since the method does not constrain the point-spacing of the input.

The approach executes in two stages (illustrated in fig.1). First it
computes the minimal area bounding box (MABB) of the input 2D
points. It then refactors each corner of the MABB by approximat-
ing the maximal inset edge-lengths, and injecting a corresponding
’eaten-away’ right-angled corner in place of the MABB vertex. The
appendix contains the implementation of the technique.

Measuring Geometric Error - Since this is a heuristic shape ap-
proximation method, it is vital to be able to measure the accuracy

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s). c© 2016 Copyright held by the owner/author(s).
SIGGRAPH ’16, July 24-28, 2016, Anaheim, CA,
ISBN: 978-1-4503-4371-8/16/07
DOI: http://dx.doi.org/10.1145/2945078.2945163

of each generated polygon relative to the input-points. For this
two measures are considered. A discrete maximum point-to-edge
distance and a continuous normalised shape-to-shape-overlap ratio.
They enable an automatic algorithm to quantify the geometric fit.

The Discrete Hausdorff-Distance Error Measure

f(A,B) = max(||Ai − (Bj , Bj+1)||) ∀i ∈ A : ∀j ∈ B

The Continuous Intersect-over-Union Error Measure

(A ∩B)/(A ∪B) > ω : ω ∈ [0 : 1]

2 Results

Figure 2: an example from the 50cm point-spacing London dataset
illustrating (from left to right) input-range-points, normals, dif-
ference of elevation building segment, resulting automatic l-shape
footprint (scan-converted boundary in gray, eat-away hull in blue)

Figure 3: Building footprints automatically recovered from 1m
point-spacing airborne range scans of the city of Bath, UK

Figure 4: Building footprints automatically recovered from 25cm
point-spacing airborne range scans of the city of Manchester, UK

http://dx.doi.org/10.1145/2945078.2945163

References
SZELISKI, R. 2010. Computer vision: algorithms and applications. Springer.

Appendix
This page presents the implemented ’eat-away’ function - used to automatically recover the building footprints illustrated in the results section.

function QUALM (points, hull, min dist)→ Quick Unconstrained Approximate L-Shape Method

points - a set of unstructured or structured 2D points
hull - an optional dense extremal boundary hull for the input pointset (to speed up the hough-transform)
min dist - the minimum length of an edge in an eat-away-corner (a positive scalar to control the minimum inset size)
return value - a 2D polygon : a sequence of vertices representing the detected L-Shape, T-Shape or S-Shape (0-4 refactored corners)

ret← {}
quad← hough transform minimal area quad(hull ? hull : points)

for i← 0 : i < 4 do
min distance← minimum distance between point and polygon(quad[i], hull ? hull : points)
if min distance > min dist then

prev ← quad[i > 0 ? i− 1 : 3]
pos← quad[i]
next← quad[i < 3 ? i+ 1 : 0]

prev dx← posx − prevx
prev dy ← posy − prevy
next dx← nextx − posx
next dy ← nexty − posy
prev len← sqrt(prev dx× prev dx+ prev dy × prev dy)
next len← sqrt(next dx× next dx+ next dy × next dy)
prev ext← (prev len−min distance)/prev len
next ext← min distance/next len

prev half quad← {
prev,
pos,
vec2D(posx + next dx× next ext× 0.5, posy + next dy × next ext× 0.5),
vec2D(prevx + next dx× next ext× 0.5, prevy + next dy × next ext× 0.5)

}
next half quad← {

pos,
next,
vec2D(nextx − prev dx× (1− prev ext)× 0.5, nexty − prev dy × (1− prev ext)× 0.5),
vec2D(posx − prev dx× (1− prev ext)× 0.5, posy − prev dy × (1− prev ext)× 0.5)

}

prev points in half ← points inside polygon(points, prev half quad)
next points in half ← points inside polygon(points, next half quad)

prev min distance← distance to closest neighbour(pos, prev points in half)
next min distance← distance to closest neighbour(pos, next points in half)

if prev min distance > next min distance then
prev ext← (prev len− prev min distance)/prev len

else next ext← next min distance/next len
end if

new prev ← vec2D(prevx + prev dx× prev ext, prevy + prev dy × prev ext)
add(new prev, ret) . new prev
add(vec2D(new prevx + next dx× next ext, new prevy + next dy × next ext), ret) . new pos
add(vec2D(posx + next dx× next ext, posy + next dy × next ext), ret) . new next

else add(quad[i], ret)
end if
i++

end for

return ret
end function

