
Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for commercial advantage and that copies bear this notice and the full citation on the
first page. Copyrights for third-party components of this work must be honored. For all
other uses, contact the Owner/Author.
Copyright is held by the owner/author(s).
SIGGRAPH 2015 Talks, August 09 – 13, 2015, Los Angeles, CA.
ACM 978-1-4503-3636-9/15/08.
http://dx.doi.org/10.1145/2775280.2793103

A Landscape Engine for A New Generation of Open World Games
Christian Nilsendahl

Avalanche Studios, christian.nilsendahl@avalanchestudios.se

Figure 1: Coast line in Just Cause 3

Abstract

An overview of how we do quick creation of huge AAA game
landscapes with high visual quality based on free form terrain
sculpting in 3D with procedural texturing and vegetation
generation. The tools use data structures which allows multi-user
editing in the same area. We apply automatic modification of the
terrain for roads, tunnels and fields. The result is compiled into a
format suitable for streaming, rendering and performing physics
calculations on game consoles. In run-time we add geometric
details based on materials.

Keywords: landscape engine, workflow, vegetation, roads,
compile pipeline

1 Background

Avalanche Studios has always had lead phrases like “enable
vertical game-play”, “the landscape is the main character” and
“go anywhere at any time”. It is important for us to have
beautiful open vistas which stretch far and contain recognizable
landmarks. At the same time the player will be able to get to any
place and we need to have a high detailed environment there, a
backdrop is not an option. To achieve this by manually adding
every detail would not be very efficient so we rely on rule based
generation as an initial tool. As an example we place different
vegetation types based on criteria such as distance to water, slope,
curvature and 2D textures painted by artists.

As the core of the landscape we have in the past used a
heightmap. It has forced us to work around limitations like using
tunnels, caves and overhangs by adding special meshes. All data
has been stored using a top-down mapping, so texture stretching
has prevented us from adding details on steep hillsides. Another
problematic limitation has been that the height data has been
divided into a regular grid, so only one user has been able to
change a tile of the heightmap at a time.

2 New techniques

To remedy the mentioned limitations we have developed a
volumetric approach to create landscapes, where multiple scalar
fields are used to represent the geometry and additional
information layers such as materials. The scalar fields are
organized in a scene graph and every field can be as small or large
as needed, and changed independent of each other. They can be
moved around, they are intended to overlap and either add or
remove geometry. The merged result gets converted to a low
resolution mesh on which textures are mapped. One of the textures
contain a displacement which makes it possible to recreate the
original high resolution geometry by tessellating the low resolution
mesh.

Our world is over 1000 square km. One 128 meter cube of source
data consumes nearly 1 MB of memory and we have a quite high
overlap factor. This means that our source data is several hundreds
of gigabytes. With that in mind, one of the biggest challenges has
been to get the compile pipeline efficient. Harnessing the power of
our workstations' GPUs has helped us.

Roads are added as splines in the world editor. In the compile
pipeline of the terrain each road will add two scalar fields, one to
carve away geometry above the road to create tunnels and the other
to add a flat surface to drive on. Textures and vegetation to dress
the terrain with are chosen based on meta-materials, where each of
these consists of a set of rules to turn one single meta-material into
an arbitrary amount of applied materials. Some of the rules are
evaluated per pixel to be able to make transitions based on slope
and displacement strength.

