
Permission to make digital or hard copies of part or all of this work for personal or 
classroom use is granted without fee provided that copies are not made or distributed 
for commercial advantage and that copies bear this notice and the full citation on the 
first page. Copyrights for third-party components of this work must be honored. For all 
other uses, contact the Owner/Author. 
Copyright is held by the owner/author(s). 
SIGGRAPH 2015 Talks, August 09 – 13, 2015, Los Angeles, CA. 
ACM 978-1-4503-3636-9/15/08. 
http://dx.doi.org/10.1145/2775280.2792519 

 

Achieving Real-Time Playback with Production Rigs

Andy Lin Gene S. Lee Joe Longson Jay Steele Evan Goldberg Rastko Stefanovic

Walt Disney Animation Studios ∗†

Fig 1: Nitro draws entire scene in real-time Fig 2: RigCache queries geometry cache for pose Fig 3: Parade distributes caching to hosts

Abstract

Rig speed is of paramount importance to animation pipelines. Real-
time performance provides immediate feedback to artists thereby
increasing the number of possible iterations and ultimately leading
to higher quality animation. This paper presents a novel method
for real-time playback of production rigs inside a host application,
such as Maya, without sacrificing functionality or ease of use. Real-
time performance is achieved by augmenting the host with Nitro,
a replacement strategy for OpenGL drawing events, RigCache, a
caching system for minimizing scene graph evaluations, and Pa-
rade, a distributed system for scheduling cache updates. Only min-
imal rig changes are required for the three tools to collectively op-
timize playback. The result is a seamless experience that is natural,
unobtrusive, and preserves familiar work flows.

1 Real-Time Playback

Nitro Operating within a host application, Nitro provides an op-
timized drawing path for geometry to OpenGL. Employing many
real-time rendering techniques, including visibility culling and
level-of-detail, Nitro’s design is functionally similar to many com-
mercial game engines, e.g. Unreal Engine. In addition, Nitro lever-
ages multiple CPUs and provides asynchronous CPU/GPU process-
ing, while employing unique standard optimization techniques, e.g.
support for Disney’s PTex and SubD. Nitro operates by disabling
the host-application’s draw path via visibility flags and then com-
mandeering the loading and displaying of geometry. It also pro-
vides a set of lightweight hooks and scripts to seamlessly integrate
into the host application’s drawing and selection events.

To guarantee smooth user interactions, Nitro supports an on-
demand, asset loading system that streams film-quality geometry
and texture data directly from disk. The loading system is largely
data format agnostic and accommodates new formats easily. With
its ability to operate on-demand the asset system isolates rig eval-
uation and other costly computations from the display event. This
feature allows Nitro to process extremely large scene graphs within
a host application, yielding a 10-20x improvement in playback per-
formance (Fig 1).

∗{andy.lin|gene.s.lee|joe.longson}@disney.com
†{evan.goldberg|rastko.stefanovic}@disney.com

RigCache RigCache implements a simple, yet elegant method to
minimize rig evaluations. It assumes that a set of rig controls and
their values define a pose, and that pose predictably maps to a set
of deformed geometry. RigCache utilizes this mapping to cache
the results of distinct poses. This approach is very effective and
complementary to any rig evaluation method, e.g. threaded graph
traversal or GPU optimizations.

For each frame redraw, RigCache computes the current pose and
searches for it in the cache (Fig 2). On a cache hit, the mapped
geometry is sent directly to Nitro for rendering, bypassing the need
to evaluate the deformer chain for the given mesh. On a cache miss,
the deformation chain is evaluated to compute the geometry for the
given pose. The cache is updated with the new mapping, and then
the geometry is sent directly to Nitro for rendering.

The speed of RigCache is dependent on the cost of computing the
pose and the frequency of cache hits. Fortunately, most rig con-
trols are driven by simple curves or layers. Therefore, the cost of
computing the pose is relatively inexpensive compared to the cost
of evaluating the full deformation chain. In practice, it is often 10
times faster. When the rig contains advanced features, such as con-
straints, the gains are less but still a significant improvement over a
full evaluation.

Parade Parade increases the likelihood of cache hits by distribut-
ing RigCache across multiple hosts with the poses of past and future
frames. Each host operates independently and in parallel to rapidly
pre-populate the geometry cache (Fig 3). By the time an animator
hits play or scrubs the time line, the cache is full and the resulting
playback is seamless.

Parade operates by sampling frames from an animated shot and then
distributing the pose of a single frame to each host. Each host uses
the pose to update the controls of a base rig which contains no an-
imation. The results are then stored in a common geometry cache.
This approach is effective since RigCache assumes that the output
of a rig is deterministic and derivable from its pose alone. Relying
on pose data only, each host can rapidly process a succession of
pose requests for any rig from any number of interactive sessions.

2 Results

Applied together, Nitro, RigCache, and Parade successfully in-
crease the playback of slow production rigs. For both Frozen and
Big Hero 6, rig speed accelerated from 3 fps to 100 fps per rig. Ani-
mators quickly embraced real-time scrubbing over time-consuming
playblasts to review their motion. Each week, hundreds of artists
cached millions of poses thereby increasing iteration and improving
animation. They were able to animate more character rigs at once
in a single shot than at any time in Disney’s past.


