
Permission to make digital or hard copies of part or all of this work for personal or 
classroom use is granted without fee provided that copies are not made or distributed 
for commercial advantage and that copies bear this notice and the full citation on the 
first page. Copyrights for third-party components of this work must be honored. For all 
other uses, contact the Owner/Author. 
Copyright is held by the owner/author(s). 
SIGGRAPH 2015 Talks, August 09 – 13, 2015, Los Angeles, CA. 
ACM 978-1-4503-3636-9/15/08. 
http://dx.doi.org/10.1145/2775280.2792573 

 

Progressive Render Checkpoint Workflows in Production

Alex Harvill∗ Andrew Kensler†

Pixar Animation Studios
David Laur

Abstract

Render checkpoints typically serve only as recovery protection for
long running renders. New tool and workflow changes leverage
full-frame progressive refinement checkpoints to provide valuable
artist feedback and improve productivity in Pixar film production.

1 Checkpoints as Artist Feedback

Film production at Pixar relies on an iterative design process across
all of our departments. Feedback on the full effect of any given
change requires lengthy test renders. Small mistakes are common
and often result in discarding many hours or days of rendering. As
a result, we have been forced to be conservative with production
tests that may affect render times or induce another rendering cycle.
Furthermore, long or unpredictable render times can require manual
intervention in farm scheduling in order to ensure that particular
frames are ready for a review on time.

Our work integrating progressive render checkpoints into our
pipeline has neatly solved these real production problems. Rough
feedback on the effects of a change are available quickly, making
additional creative iterations and experimentation possible and less
risky. Mistakes can be spotted early and fixed for resubmission
while time is still available, reducing waste and frustration. Use-
able checkpoints can be taken to reviews at a fixed time of day,
while progressive refinement of the same render continues to run.

2 Checkpoint Support in RenderMan RIS

Our production renderer, Pixar’s RenderMan (“prman”) running in
RIS mode, can produce final frames by progressively casting sam-
pling rays across the whole frame until it converges on a given level
of refinement. Thus the entire frame proceeds from noisy to final
quality in a series of passes. This is different than modes that emit
final quality tiles or scanlines sequentially without displaying inter-
mediate results, and leaving interesting portions of the image blank,
possibly for hours at a time.

The RIS renderer can periodically write these intermediate full
frames to disk, at user-defined elapsed time or sample count in-
tervals. The usual purpose of these checkpoint images is to enable
recovery – if the current render crashes or is killed, a new prman
process can pick up again from the last checkpoint. These images
are written using a special prman OpenEXR display driver that adds
metadata and extra channels, using standard EXR format extension
tags. This additional data is sufficient for recovery; no auxiliary
files are needed. Standard image viewers and other tools will ignore
the extra data and see only a regular image file, or the extra data can
stripped entirely if the recovery capability is no longer needed.

∗e-mail:aharvill@pixar.com
†e-mail:aek@pixar.com

3 The Post-Checkpoint Hook

In practice, RIS production renders on the farm run in full-frame
progressive mode and are set to write a checkpoint image every 20
minutes. Furthermore, the custom EXR driver also provides one
critical additional function. Whenever a checkpoint image is writ-
ten, the driver also causes an external post-process to be run on the
new checkpoint file, while the renderer itself returns to refining the
in-memory frame. At Pixar, this post-process does several things. It
copies the recoverable checkpoint to a central fileserver where it is
safe and can be resumed later if the current farm node goes down.
It also records a few basic statistics about the current checkpoint
into the image itself and into a production database. It also creates
a compressed, playback friendly copy of the image. Artists are then
free to use these images for review and sanity checking purposes.

4 Changes in Day to Day Behavior

These new refinement, checkpoint, and recover capabilities have
led to several important workflow and cultural changes at the studio.
Reviews scheduled for 9:00AM are now canceled less often due to
lack of finished renders; instead partially refined checkpoints are
available and are often suitable for review. The improved feedback
loop from these early checkpoint results on long batch renders and
the interactive RIS live re-rendering technology both contributed to
people being more comfortable with the new renderer during early
adoption. Early feedback on overnight renders allow artists to go
home confident that there will be useful results in the morning.

5 Unexpected Benefits

“Done” is now a fuzzy concept – people can proceed with work
while being unaware whether a render has really finished or not.
People have an intuitive sense of the how the image is progressing
and whether it is “right” or not, even from noisy early iterations.
The stored recovery image allows us to tolerate more machine faults
on the farm, and we can make use of less robust servers. The recov-
ery capability can also be used to migrate memory-intensive renders
to machines with more available resources – simply by killing the
process and rescheduling the resumed render elsewhere.

6 Challenges

This new workflow presents some challenges as well. Multiple in-
termediate copies of frames create more I/O on the network and
fileservers, the checkpoints are larger than final images due to the
additional data, and they may not compress well due to being inher-
ently more noisy. It is not practical to ask prman for full statistics
with every checkpoint, and in practice the renderer waits until end
of frame to generate some of the summary statistics. Furthermore,
it isn’t clear how statistics should be combined across restarts, es-
pecially when resuming on a different class of machine.

Render farm job scheduling and dependency constraints are also
complicated by the presence of useful partial results that them-
selves need additional processing, such as compositing across ren-
dered sub-elements or creating an animation loop. Experiments
with reentrant and checkpoint-aware job structures in our Tractor
queueing system have suggested ways that some of these issues
may be addressed in the future.


