
Permission to make digital or hard copies of part or all of this work for personal or 
classroom use is granted without fee provided that copies are not made or distributed 
for commercial advantage and that copies bear this notice and the full citation on the 
first page. Copyrights for third-party components of this work must be honored. For all 
other uses, contact the Owner/Author. 
Copyright is held by the owner/author(s). 
SIGGRAPH 2015 Talks, August 09 – 13, 2015, Los Angeles, CA. 
ACM 978-1-4503-3636-9/15/08. 
http://dx.doi.org/10.1145/2775280.2792586 

 

Real-Time Crowd Visualization in Point-Cached Pipelines

Jeremy Cowles
Pixar Animation Studios

Takahito Tejima
Pixar Animation Studios

David Yu
Pixar Animation Studios

Figure 1: A real-time swarm of Buzz Lightyears.

1 Point Cached Crowds

In computer animation, a crowd of characters can create a dramatic
visual impact and make an expansive set feel like it’s teeming with
life. To orchestrate this large scale animation, technical directors
use procedural tools to author animation en masse. The charac-
ter animation is created by animators for an array of background
models, such as walk cycles, action transitions, and reactions. De-
spite being modeled and rigged specifically as a background char-
acter, deformation of crowd characters is still driven by high fi-
delity rigs that are too expensive to execute in real-time, even for
small scale crowds. Background characters are designed to have
parametric controls to create visual diversity, which require heavier
mesh geometry to support such variation. The character structure
must support standard shading and lighting workflows, which re-
sult in characters that include separate object primitives for skin,
hair, and clothing, and frequently even more fine grained objects
for eyes, teeth, fingernails, etc.

As modern production pipelines shift to point-cache-based solu-
tions, such as Alembic and Universal Scene Description (USD),
real-time preview of crowd animation becomes constrained by CPU
driver overhead, disk IO, and CPU-GPU memory bandwidth: this
shifts the typical crowd visualization problem from one of GPU rig
execution, to a disk IO and memory optimization problem.

2 Simplification and Point Instancing

Once character animation is created, an automated process exports
a point cache preserving the original deformed mesh, object hier-
archy, transforms and shader structure. The point cache is then
used to generate a simplified version of the character with fused,
decimated meshes and a greatly simplified object hierarchy. All
versions of the model co-exist and are expressed as a live, hot-
swappable structure in the scene graph. This structure enables both
high-performance and high-fidelity preview. The new switchable
representation is then instanced into a point cloud, which is also
expressed in the scene graph.

Our contributions over prior work include: 1) a novel GPU dispatch
structure that leverages modern hardware features to enable paral-
lel culling at individual instance granularity; 2) a GPU indirection
table that allows for unordered instances, enabling maximal hard-
ware instancing via dynamic remapping; 3) an animation cache that
remaps the last frame’s hardware prototypes to the next frame’s re-

quired pose, when possible.

3 Dispatch Structure

When dealing with instanced geometry, frustum-bounding box in-
tersection tests are excessively expensive to compute on the CPU
due to the large number of instances and the resulting computa-
tion requred to construct and test bounds for each instance. Given
that this problem is highly parallel in nature, we have developed
a dispatch strategy to leverage modern GPU hardware to process
instances in parallel. The strategy includes indirect drawing, trans-
form feedback, atomics and coherent CPU-GPU memory to allow
for both efficient CPU dispatch (extremely low driver overhead) and
GPU frustum culling of individual instances.

4 Instancing Indirection

The GPU data structures are organized such that each primitive can
express instance offsets in the point cloud. The number of instance
offsets becomes the number of hardware instances and the aggre-
gate instance offset table is accessed from the shader to discover fi-
nal instance data in the GPU representation of the point cloud. This
indirection table enables efficient per-instance GPU culling and dy-
namic aggregation of prototypes.

5 Prototype Animation Caching

As time offsets of individual instances vary over time, so too does
the number of master prototypes, where each prototype can draw
one or more hardware instances. Previously uploaded point cache
data is reclaimed on each frame as a GPU-local animation cache by
dynamically remapping instances to prototype primitives, dramat-
ically reducing disk IO, while still only caching a single frame of
animation per prototype.

With the strategies outlined, we obtain real-time frame rates, while
only caching a single frame of animation data per prototype. In one
case, an animated crowd of 5000 characters with 408 unique time
offsets were visualized at 16ms per frame (60 FPS) on a Quadro
4000 GPU.


