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Toward Validation of a Monte Carlo Rendering Technique

Paul Kilgo∗and Jerry Tessendorf†

School of Computing, Clemson University

Figure 1: (Left) Normalized intensity plot (a “rendered image”) of a numerical calculation of a point spread function. This includes path
lengths slightly longer than a direct path. (Right) Path sample pattern.

Abstract

A Monte Carlo multiple scattering technique for participating me-
dia is extended. Validation against an experimentally well-studied
optics problem is discussed. Designing initial paths for a numer-
ical integration of Feynman path integrals is posed. A plot of the
resulting integration is discussed.
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1 Introduction and Motivation

We outline ongoing work to validate a Monte Carlo multiple scatter-
ing technique [Tessendorf 2009] against experimental data. Monte
Carlo rendering techniques have long been known to the computer
graphics community. If done correctly, they avoid bias that is in-
troduced by deterministic techniques, though in practice they are
computationally expensive. Our technique differs from others in
that sampling paths are generated and assigned a weight. It is de-
fined in terms of the mathematical construct of Feynman path in-
tegrals. Recent results [Kilgo and Tessendorf 2015] have shown
how to asymptotically speed up its path perturbation algorithm. Re-
cently we have started to make progress in numerically computing
a point spread function to validate the technique.

2 Technical Approach

Point spread functions are a familiar concept in optics. A typical
scenario is a fixed emitter at ~x0 which emits a signal in some di-
rection n̂0 through a uniform scattering media. A semi-spherical
receiver at ~x1 then receives the transmission over a range of direc-
tions n̂1 and can measure how much of the intensity has scattered
during the transmission. A physical interpretation of this is a laser
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suspended in ocean water which is received on-axis by a pinhole-
shaped camera. We can model this situation in our technique by
generating paths from ~x0 to ~x1 having a fixed direction n̂0 and a
random direction n̂1. As well, we must consider paths of all possi-
ble lengths s.

3 Implementation and Future Work

We have developed a means of constructing initial paths to use in
the path perturbation algorithm. Using Bézier curves allows precise
control of both the end points and end orientations of the paths.
We use ~x0, ~x0 + an̂0, ~x1 − bn̂1, and ~x1 as the control vertices,
where a and b are arbitrary constants. We can introduce as the
third control vertex (~x0 + ~x1)/2 + cn̂2 for an optional additional
means to vary the path length. Here again, c is an arbitrary constant
and n̂2 is a spherically-uniform unit vector. This defines a path ac-
cording to the constraints of the problem, but it is required that the
path be expressed in terms of a discrete Frenet-Serret formulation
with constant step size ∆s. Therefore, it is necessary to find an arc
length parameterization of the Bézier curve numerically. For our
application we can tolerate a high amount of error as the first few
samples in the numerical integration are discarded. We compute a
low-resolution arc length parameterization of the Bézier curve us-
ing traditional root-finding methods and interpolate in between. Of-
ten this will have significant error in the resulting path’s ~x1 and n̂1.
Our path perturbation algorithm completes the task and finds an ap-
propriate ~x1 and n̂1 with very little error. Relative intensity plots
and sampling patterns are produced such as those seen in Figure 1.
Path lengths here are slightly longer than a direct path. There is an
expected dip in the intensity at the center of the image. In future
work we will analyze our numerical results against experimentally
acquired data.
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