
Permission to make digital or hard copies of part or all of this work for personal or 
classroom use is granted without fee provided that copies are not made or distributed 
for commercial advantage and that copies bear this notice and the full citation on the 
first page. Copyrights for third-party components of this work must be honored. For all 
other uses, contact the Owner/Author. 
Copyright is held by the owner/author(s). 
SIGGRAPH 2015 Posters, August 09 – 13, 2015, Los Angeles, CA. 
ACM 978-1-4503-3632-1/15/08. 
http://dx.doi.org/10.1145/2787626.2792599 

 

Reducing Geometry-Processing Overhead for Novel Viewpoint Creation
Francisco Inácio Jan P. Springer

University of Hull

(a) Deferred shading, 0° offset. (b) Deferred shading, 30° offset. (c) Deferred shading, 60° offset.

(d) FHV rendering, 0° offset. (e) FHV rendering, 30° offset. (f) FHV rendering, 60° offset. (g) Performance comparison.
Figure 1: Screen shots (a) and (d) show a scene rendered using deferred shading and fragment-history volumes, respectively. (b) and (c) reuse the existing frame-buffer data to
reconstruct for new viewpoints using deferred shading while (e) and (f) reconstruct the scene using fragment-history volumes for the same set of viewpoints. (e) and (f) correctly
reconstruct the scene for the viewpoint changes but (b) and (c) exhibit artifacts and cannot reveal previously hidden objects. (g) provides an overview of initial performance data.

1 Introduction and Motivation
Maintaining a high steady frame rate is an important aspect in inter-
active real-time graphics. It is mainly influenced by the number of
objects and the number of lights to be processed for a 3d scene. The
upper-bound effort for rendering a scene is then defined by the num-
ber of objects times the number of lights, i. e. O(NO · NL). Deferred
shading reduces this upper bound to the number of objects plus the
number of lights, i. e. O(NO + NL), by separating the rendering pro-
cess into two phases: geometry processing and lighting evaluation.
The geometry processing rasterizes all objects but only retains visi-
ble fragments in a G-Buffer for the current viewpoint. The lighting
evaluation then only needs to process those surviving fragments to
compute the final image (for the current viewpoint). Unfortunately,
this approach not only trades computational effort for memory but
also requires the re-creation of the G-Buffer every time the view-
point changes. Additionally, transparent objects cannot be encoded
into a G-Buffer and must be separately processed. Post-rendering 3d
warping [Mark et al. 1997] is one particular technique that allows to
create images from G-Buffer information for new viewpoints. How-
ever, this only works with sufficient fragment information. Objects
not encoded in the G-Buffer, because they were not visible from
the original viewpoint, will create visual artifacts at discontinuities
between objects. We propose fragment-history volumes (FHV) to
create novel viewpoints from a discrete representation of the entire
scene using current graphics hardware and present an initial perfor-
mance comparison.

2 Our Approach
FHVs are based on the idea of the A-Buffer and can be implemented
on current graphics hardware as per-pixel linked lists of fragments
[Yang et al. 2010]. Our prototype software uses shader-storage
buffer objects in OpenGL similar to [Crassin 2010]. However, FHVs
are biased towards the direction of the original viewpoint, i. e. the
fragment density along the original view direction is much higher
than for any orthogonal direction. Using simple point splatting to
visualize the captured fragments exhibits artifacts for novel view-
points. To alleviate this we render the scene from each of the main
directions, i. e. X , Y , and Z , and store the resulting fragments into
an octree structure. Instead, of using a per-pixel linked lists of frag-
ments we use per-octant linked lists of fragments.

3 Initial Results
We compare the performance of the geometry-processing stage for
deferred shading (DS), FHVs using a per-pixel linked list of frag-
ments (FHVG), and FHVs using an octree representation of frag-
ments from one basis direction (FHVOCT). We used two different
scenes for our tests: a simple low depth complexity scene and a
scene with high polygon count as well as high depth complexity (cf.
figure 1g). Our tests indicate that, for DS with the simple scene,
the geometry pass took 0.15 ms and the lighting pass took 0.34 ms
on average. The correspondent values for FHVG and FHVOCT were
10.27/1.20 ms and 7.56/1.17 ms, respectively. For the complex scene
DS took 19.49 ms for the geometry pass and 0.12 ms for the light-
ing pass. The correspondent values for FHVG and FHVOCT were
102.19/1.30 ms and 99.49/1.44 ms, respectively.
For static viewpoints DS clearly outperforms our FHV technique, i. e.
the DS lighting pass is, on average, 10 times faster than either that of
FHVG or FHVOCT. However, in the case of a (constantly) changing
viewpoint DS needs to execute its geometry pass each frame while
our FHV technique simply reuses the spatial representation of the
scene. For the the simple scene DS is still faster due to less overhead
by either storing a fragment’s data or simply discarding it after the
rasterization stage. However, for complex scenes the DS’s geom-
etry pass becomes the bottleneck. In contrast, our FHV technique
only needs to execute the lighting pass. Frame times are then: DS
19.49 ms + 0.12 ms vs. FHVOCT 1.44 ms.

4 Next Steps
Currently we only use a simple point-splatting technique to evaluate
the fragments in the lighting pass. FHVs storing fragments in an oc-
tree will allow for lighting evaluation based on ray casting. This will
also allow for correct transparency blending, shadow computation,
and indirect lighting, to name just a few techniques. While FHVs are
able to create novel viewpoints from static scene data they would
incur a large overhead for scenes with dynamic elements. However,
FHVs based on an octree structure would allow for incremental up-
dates of specific objects, probably best in combination with compute
pass(es) on the GPU.

References
C R A S S I N , C . 2010. OpenGL 4.0+ ABuffer V2.0:

Linked lists of fragment pages. last accessed: 2015-
05-13, http://blog.icare3d.org/2010/07/
opengl-40-abuffer-v20-linked-lists-of.
html.

M A R K , W. R . , M C M I L L A N , L . , A N D B I S H O P, G . 1997.
Post-Rendering 3D Warping. In I3D ’97: Proceedings of the
1997 Symposium on Interactive 3D Graphics, ACM, 7–16.

YA N G , J . C . , H E N S L E Y, J . , G R Ü N , H . , A N D T H I -
B I E R O Z , N . 2010. Real-Time Concurrent Linked List Con-
struction on the GPU. Comput. Graph. Forum 29, 4, 1297–1304.

http://blog.icare3d.org/2010/07/opengl-40-abuffer-v20-linked-lists-of.html
http://blog.icare3d.org/2010/07/opengl-40-abuffer-v20-linked-lists-of.html
http://blog.icare3d.org/2010/07/opengl-40-abuffer-v20-linked-lists-of.html

