
Permission to make digital or hard copies of part or all of this work for personal or 
classroom use is granted without fee provided that copies are not made or distributed 
for commercial advantage and that copies bear this notice and the full citation on the 
first page. Copyrights for third-party components of this work must be honored. For all 
other uses, contact the Owner/Author. 
Copyright is held by the owner/author(s). 
SIGGRAPH 2015 Posters, August 09 – 13, 2015, Los Angeles, CA. 
ACM 978-1-4503-3632-1/15/08. 
http://dx.doi.org/10.1145/2787626.2787629 

 

Fully Automatic ID mattes with support for Motion Blur and Transparency

Jonah Friedman, Andrew C. Jones∗

Psyop

Figure 1: ”Beauty” render with depth of field and partially transparent grass (a). ID mattes taken from: bunny (b), multiple partially
transparent grass objects selected by material (c) and arbitrarily selected foreground objects (d). ID-coverage pairs with colorized IDs and
coverage channels for first (e) and second (f) depth layers.

CR Categories: I.3.3 [Computer Graphics]: Picture/Image
Generation—Bitmap and framebuffer operations;

Keywords: rendering, ID matte

1 Introduction and Motivations

In 3D production for commercials, television, and film, ID mat-
tes are commonly used to modify rendered images without re-
rendering. ID mattes are bitmap images used to isolate specific
objects, or multiple objects, such as all of the buttons on a shirt.
Many 3D pipelines are built to provide compositors with ID mattes
in addition to beauty renders to allow flexibility.

A complication in providing ID mattes is that multiple objects can
occupy the same pixels. Reasons for this include anti-aliasing, fil-
tering, motion blur, depth of field, and transparency. As a result, the
most common way of providing ID mattes is in the form of RGBA
images. In these images, an ID matte exclusively occupies a sin-
gle channel of a series of RGBA images. The number of RGBA
images needed to give compositors flexibility quickly accumulates.
It can also be time-consuming for 3D artists to set up ID mattes,
especially if they have to guess which mattes will be required.

Another approach is using an ID-coverage pair. The ID channel en-
codes the ID of one object per pixel. The coverage channel encodes
how much of the pixel’s value is contributed by this object. This
method is unable to handle cases where multiple objects per pixel
are important. It is possible to guess the ID of the second object and
use inverted coverage, but this covers two objects at most. ID gen-
eration is also important, a per-object value from the renderer may
not stay the same from shot to shot or even from frame to frame.
Per-object IDs may also be too granular to be useful, and a number
of objects grouped into one ID would be more useful.

∗e-mail:jfriedman@psyop.tv, ajones@psyop.tv

2 Our Approach and Implementation

Our approach is closely related to the ID-coverage pair. We present
two innovations: automatic generation of useful IDs from names,
and ranked ID-coverage pairs to arbitrary depth.

Our system generates useful groupings of objects using already-
available data: the names of objects and materials. Object names
are broken into names and namespace. These names and name-
spaces stay stable from frame to frame and from shot to shot. Ob-
ject names have the same granularity as using an object ID (cf. fig-
ure 1d), but remain the same from shot to shot and frame to frame.
Using namespaces for an ID allows objects shared by an asset to
be grouped together. Material assignments are typically already
created by artists to group objects with similar properties (cf. figure
1c). All of these names have also already been chosen by artists to
meaningfully describe their contents.

We hash the names as samples are taken and use the hash as our IDs.
We repeat this process three times in our implementation, creating
IDs out of names, namespaces, and material names. The names are
also added to a manifest which will later allow reverse name look-
ups. These create a much better user experience for compositors, as
their selection lists can be presented to them as a list of names.

At render time our system computes hashes from names and then
records these hashes in arbitrary output variables. The samples are
weighted using an ordinary filtering kernel, such as Gaussian or
Blackman-Harris. If the sample is partially transparent, its posi-
tional weight is divided among its depth samples. The IDs are then
ranked by their accumulated weight. The highest ranked ID is con-
sidered the most important ID in the pixel and its weight will be its
coverage value. Together this is the first ID-coverage pair (cf. fig-
ure 1e). The second highest ranked ID and its coverage value make
up the second ID-coverage pair (cf. figure 1f), and so on to arbitrary
depth. The layers are stored in a multi-channel OpenEXR file. We
use six levels of depth as our default value, meaning each pixel will
contain an accurate matte for its six most contributing IDs. In rare
cases where more is needed, an artist can simply increase the depth
value.

We have found that in real-world production, our system works very
well as a practical replacement for the virtually all ID mattes. The
user experience for both creating and using mattes has been vastly
improved. In further work, we plan to explore transferring shad-
ing adjustments done in compositing back to 3D assets by taking
advantage of the shared names.


