
Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for commercial advantage and that copies bear this notice and the full citation on the
first page. Copyrights for third-party components of this work must be honored. For all
other uses, contact the Owner/Author.
Copyright is held by the owner/author(s).
SIGGRAPH 2015 Posters, August 09 – 13, 2015, Los Angeles, CA.
ACM 978-1-4503-3632-1/15/08.
http://dx.doi.org/10.1145/2787626.2792610

Decomposition of 32 bpp into 16 bpp Textures with Alpha

Nobuki Yoda Takeo Igarashi
The University of Tokyo

Original (32bpp) Alpha Blend

Alpha Decomposition (16 bpps)

(a) (b) (c) (d) (e)

Figure 1: (a) An overview of our method. (b, c) A normal 16 bpp sprite sheet and its rendering result. It contains noise. (d, e) A 16 bpp
sprite sheet with selectively alpha-decomposed textures and its rendering result. The noise is reduced. (b-e) Knight (© Game Pro Market)
and metal squares (© Tri-Angulum Studios) are from Unity Asset Store (https://www.assetstore.unity3d.com/).

1 Introduction

In 2D game graphics, textures are packed into a single texture called
a sprite sheet in order to achieve efficient rendering. The sprite sheet
can be compressed to save memory by using various compression
methods such as block-based compressions and 16 bpp (bits per
pixel) tone reduction. These methods are not without some prob-
lems, though. Block-based compressions are GPU-dependent, and
high-quality compressions such as ASTC [Nystad et al. 2012] are
often unavailable on mobile devices. 16 bpp tone reduction–often
used with dithering–can create undesirable noise when it is scaled
up (Figure 1c).

In this work we propose a new method called alpha decomposition
for achieving better trade-off between texture quality and memory
usage in 2D sprites. The artist first decomposes a 32 bpp texture
into two 16 bpp textures with alpha and then packs them into a
single sprite sheet together with normal 16 bpp textures. When ren-
dering, the two decomposed 16 bpp textures are simply layered and
alpha-blended, reproducing the source 32 bpp as faithfully as possi-
ble (Figure 1a). This method does not require customized rendering
pipelines, and thanks to sprite batching is able to achieve efficient
rendering, as opposed to a naive method that use separate sprite
sheets for 32 bpp and 16 bpp textures.

2 Alpha Decomposition

First, we define a novel error metric for RGBA color called inte-
grated square error over all possible background colors (ISEABC):

ISEABC (a, b) =

∫
x∈[0,1]3

|C (a� x)−C (b� x)|2 dx

where a and b are the compared colors with alpha, x is an opaque
background color , the operator� is alpha blending [Wallace 1981],
and C (c) is the RGB vector of c. Since ISEABC is an extension
of square error of RGB vector which is used for MSE and PSNR,
these metrics can be extended for RGBA color space by ISEABC.

Next we define the alpha decomposition using the error metric. Let
t be a source 32 bpp texture, f and b be the decomposed 16 bpp
textures, and u be a UV texture coordinate. The decomposition is
then formulated as the following minimization problem:

arg min
〈f,b〉

∫
u∈[0,1]2

ISEABC (F (t,u) ,F (f,u)�F (b,u))du

where F represents texture filtering and wrapping. We propose ap-
proximation algorithms for the problem. If F is a nearest-neighbor
filter, the problem can be solved independently for each pixel. If it
is a bilinear filter, the filtering results depend on neighboring pixels,
so we minimize the local errors sequentially from the left-bottom
pixel to the top-right pixel, referring to previous pixels. If alpha
is fixed, ISEABC can be minimized independently for each RGB
component. We first choose some candidates for the resulting al-
pha pair from all possible pairs by thresholding the alpha error, and
then search for the best RGB pair for each candidate pair.

Our experimental results are summarized as follows. Computation
time for decomposition was approximated 3 minutes for Figure 1a
(1282 pixels). We measured image quality when applied to Kodak
images1 and the average of our method (PSNR = 53 dB) was better
than that of 8 bpp ASTC (PSNR = 45 dB). We also measured ren-
dering speed for a highly dense scene and our method (24 fps) was
equivalent to normal 16 bpp (24 fps) and faster than a naive method
of using separate sprite sheets for 16 bpp and 32 bpp (8 fps).

References

NYSTAD, J., LASSEN, A., POMIANOWSKI, A., ELLIS, S., AND
OLSON, T. 2012. Adaptive scalable texture compression. In
Proc. EGGH-HPG’12, 105–114.

WALLACE, B. 1981. Merging and transformation of raster images
for cartoon animation. In Proc. SIGGRAPH ’81, 253–262.
1Kodak lossless true color image suite (http://r0k.us/graphics/kodak/)

