
Why You Should(n’t) Build Your Own Game Engine
Andrés Rivela

Digital Bandit Studios
Vancouver, B.C., Canada

andres.rivela@digitalbanditstudios.com

Figure 1: (A) A thread definition and its associated components. (B) A component definition and its associated actors. (C) An
actor definitionwith instance data and attached component data. (D) An example behavior asset used for all logic and scripting.

ABSTRACT
Developing a modern game engine from the ground up has become
an increasingly rare opportunity, and with good reason. It is a costly
commitment and coupled with the existing technologies readily
available at reasonable pricing models, it is a hard sell for any
startup to take on such a burden.

This paper focuses on a few key issues when developing such a
technology base to serve as both a guide and a warning. Rather than
discussing the implementation details and features of the engine,
the paper will delve into the importance of efficient workflows;
the challenges of outsourcing, and finally the lessons learned from
building the technology and a game that runs on it.

CCS CONCEPTS
• Software and its engineering → Object oriented architec-
tures.

KEYWORDS
Game Engine, Software Architecture, Tools

ACM Reference Format:
Andrés Rivela. 2019. Why You Should(n’t) Build Your Own Game Engine.
In Proceedings of SIGGRAPH ’19 Talks. ACM, New York, NY, USA, 2 pages.
https://doi.org/10.1145/3306307.3328180

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SIGGRAPH ’19 Talks, July 28 - August 01, 2019, Los Angeles, CA, USA
© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-6317-4/19/07.
https://doi.org/10.1145/3306307.3328180

1 WORKFLOWS ARE KING
Everyone knows the saying, “Work smart, not hard.” The truth of
an indie project is that you will have to do both, but it is imper-
ative that the time spent on the project consistently pushes the
product steadily forward. This is only possible with good tools and
processes.

1.1 CODEWORKFLOW
Ideally, the engine should always be running. As the projectmatures,
engine start-up times will increase respectively for various reasons.
As such, shutting down the engine, compiling the code, and re-
starting becomes a prohibitive workflow. While updates to the
core engine and tools will demand it, changes to the game code
should not. Therefore, the core engine is a C++ DLL that houses
all the critical runtime code and systems. On top of that sits a
C# Editor that exposes engine functionality and provides various
tools and widgets. Between them is a Managed DLL that governs
data marshalling and interoperability between the managed and
unmanaged systems. Finally, game specific code lives in a separate
DLL that is loaded into a separate domain to allow it to be hot-
loaded whenever updated.

1.2 ASSET WORKFLOW
Working with content requires the same quick turnaround as code.
Assets in the engine are anything that requires an associated editor
for previewing and/or editing. In addition, an asset can specify an
external source that will be monitored for changes and updated
in-engine automatically. A few surprising lessons surfaced from the
continued use of certain engine tools. First, was the realization that
can only come from mastery, that is, the extensive use of any given
tool reveals its full capabilities. Many tools were predicated on an
initial idea or requirement that I designed around meeting the said

https://doi.org/10.1145/3306307.3328180
https://doi.org/10.1145/3306307.3328180


SIGGRAPH ’19 Talks, July 28 - August 01, 2019, Los Angeles, CA, USA Andrés Rivela

use-case. It is only after implementing and using the tools for more
than basic proof of concept that I became aware of the power of
a tool and how much more functionality could be leveraged from
them. It seems counterintuitive, but I had designed and built tools
without fully realizing at the time how to use them. Secondly, after
employing any tool for a significant amount of time, the need to
address quality of life features becomes tantamount to productivity.
The node-based behavior tool is a perfect example: trivial features
like copy and paste within and across behaviors or cloning of inputs
became major drivers to facilitate the creation of more complex
logic. Initially I was hesitant of spending time on improving existing
(and functioning) tools. Early on I adopted a “let the needs drive
requirements” mentality to avoid getting sucked into developing
engine features I wanted versus those I needed. This was a mistake,
but it became apparent only after addressing quality of life issues
with some of the heavily used tools. The easier it is to work, the
more willing you are to be thorough, and the better your final
product will be for it.

2 CONTENT OUTSOURCING
Engineering challenges aside, content outsourcing proved to be
the biggest operational problem from a production point of view.
The major drawback being that content creators were unfamiliar
with the engine and were not provided a framework to simulate
the final environment - for time constraints rather than technical
ones. As a result, there was no testing or validation that could be
done on their end prior to the delivery of an asset. In the case of
3D models, only FBX files are supported since Autodesk Maya is
the only licensed product I own, and further, only a subset of FBX
features were implemented to suit the needs of the engine as they
arose. As a result, I was limited to artists working only with Maya
and requiring them to ensure specific properties of the exported
meshes were handled correctly - one such requirement was freezing
transforms prior to export. Whilst none of the aforementioned
issues was critical, they did add a level of frustration for the artists
that felt constrainedwith their workflows. Consequently, I ended up
creating a lot of the content myself, or at the very least had to touch
every asset purchased, contracted, or found in free marketplaces.
Postponing final bulk asset creation is a good idea, especially when
authoring content for an ever-evolving technology base. Expect
to go over asset types multiple times and sometimes entirely re-
author them. Content creation felt like a perpetual case of two steps
forward and one back throughout the entirety of development.

3 JACK OF ALL TRADES MASTER OF NONE
My journey led me to be the designer and artist, as well as the
pipeline, game, and engine engineers. This firsthand comprehen-
sive view of development highlighted, above all, that needs should
dictate features. This became an increasingly frustrating paradigm
as the development time grew. The breadth of work inevitably
means that you have only so much time to dedicate to any given
specific engine system. This often results in stripped-down imple-
mentations of some features or entirely avoiding them. When the
project began, DX12 had not been released and so the renderer was
written around a DX11-style API. When it was finally available,
I could not justify going back and re-implementing the renderer.

This also applies to rendering techniques that have become popu-
lar over the last few years including screen-space reflections and
volumetric lights and fog. In years past, I would have implemented
these features in a test-bed solely for research purposes on my own
time. However, as an indie developer, the differentiation between
your own time and work time is blurry. As a result, I feel somewhat
behind the times with the latest rendering techniques and one of
the things I look forward to the most is being able to get back to
doing some implementation research.

4 CONCLUSION
Ultimately, my conclusion is that building your own engine is an
academic exercise. Alone, you cannot hope to compete against
existing well-established technologies, nor can you hope to build
games of significant scope due to resource limitations. If your goal
is simply to make games then you should use existing technologies.
Only the requirement of some absurd feature that cannot be found
elsewhere can ultimately justify taking such a burden on. Personally,
I am a romantic of the old days and this was something I needed to
do for myself.

5 BY THE NUMBERS
Approximately 4 years of development time and 180,185 lines of
code in 1003 source files. 271 Behaviors, 284 Textures, 566 Meshes,
91 Materials (86 HLSL Shaders), and 126 Audio Files. 1 Developer.


	Abstract
	1 WORKFLOWS ARE KING
	1.1 CODE WORKFLOW
	1.2 ASSET WORKFLOW

	2 CONTENT OUTSOURCING
	3 JACK OF ALL TRADES MASTER OF NONE
	4 CONCLUSION
	5 BY THE NUMBERS

