Facial pipeline in Playmobil: the movie

Jeremy Ringard

ON Animation studios

Claude Levastre
ON Animation studios

ABSTRACT

In this paper, we present the technical pipeline that has been de-
ployed at ON Animation studios to manage the specificity of facial
animation on the Playmobil movie. According to the artistic re-
quirement of this production, we developed a complete texture-free
solution that gives the artists the ability to animate 2D facial fea-
tures on a three-dimensional face while having a realtime raytraced
feedback in the viewport. This approach provides full control over
the shapes and since the final result is computed at render time, the
visual style can be controlled until the very end of the workflow.

CCS CONCEPTS

« Computing methodologies — Animation; Rendering.

KEYWORDS

ray tracing, animation, facial, 2D, projection, texture

ACM Reference Format:

Jeremy Ringard and Claude Levastre. 2019. Facial pipeline in Playmobil: the
movie. In Proceedings of SSGGRAPH °19 Talks. ACM, New York, NY, USA,
2 pages. https://doi.org/10.1145/3306307.3328207

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

SIGGRAPH 19 Talks, July 28 - August 01, 2019, Los Angeles, CA, USA

© 2019 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-6317-4/19/07.

https://doi.org/10.1145/3306307.3328207

1 INTRODUCTION

Facial animation for CG characters has been a well discussed topic in
the past years. Many approaches have been developed to make the
deformation of 3D facial features user friendly. The production of
the movie Playmobil raises a new challenge: According to the toy’s
design, the facial features are flat, made of paint applied directly
to the face geometry. Thus, we had to design a new approach to
fulfill this requirement. We also had to make sure the artistic choice
wouldn’t be constrained by technical issues. That means we want
our system to be robust enough to display complex face setups
on a possibly deformable head shape, and flexible enough not to
force the animation style into stepped motion or too exotic rigging
system.

2 CANDIDATE SOLUTIONS

Several solutions have been considered during the design process
of our facial setup. Here is a quick overview of the reasons why we
eliminated them.

2.1 Projected geometry

Modeling and rigging facial features as simple shapes projected
on the face’s surface would provide a quick visual feedback to the
animators but this solution suffers Z-fighting artifacts. Projecting
3D shapes on the face could also have intersection or floating issues
on close up shots. Moreover, this approach is more suited for char-
acters with very simple facial features such as a black dot for the
eye. Building any complex composition is much more complicated:
For instance, having an eyelid that masks the eye while the pupil’s
visibility is clamped by the limits of the visible sclera would require
a much more complicated rig.

https://doi.org/10.1145/3306307.3328207
https://doi.org/10.1145/3306307.3328207

SIGGRAPH 19 Talks, July 28 - August 01, 2019, Los Angeles, CA, USA

2.2 Texture flipbook

Another natural approach would consist in using a catalog of tex-
tures for the different facial expressions, possibly split per facial
feature. This "flipbook" like solution makes the rigging step much
easier, but it comes with several drawbacks. Although it helps the
animators to keep their animation coherent with the overall look
of the movie, it also limits the amount of expressions available
and doesn’t provide any flexibility to add subtle variations along
the animation. This solution could also become costly regarding
storage, texture resolution and overall file management.

3 OUR SOLUTION: 3D RIGGED FLAT SHAPES

The solution we developed is designed in three parts: First, a 3D rig
driving 2D shapes in the animation software. The second part is a
custom Maya plugin that converts these shapes to a dynamic texture
and apply it on the 3D face for viewport display. The final part is a
specific shader executed at render time in Guerilla render in order
to composite the facial features without resolution or sampling
limitations.

3.1 Facial rig

Given the specific 2D style of the facial, our workflow doesn’t need
to rely on a modeling step for the face. Contrary to most common
CG characters, the setup of the face can go straight from design to
the rigging team. Thus, we developed a set of tools inside Maya that
give the rigging artists the ability to draw directly the shapes on the
face, matching the provided reference. Since the complexity of the
face relies mostly on the layering of the shapes rather than on the
shapes themselves, the artists just have to draw curves matching
the silhouette of each facial feature.

These manually shaped curves are then converted into flat Bezi-
er curves in a 2D space corresponding to the head UV space, and
each facial feature is sorted on the Z axis to provide basic layering
(ex: pupil in front of the sclera). This curve system is automatically
rigged with generic parenting relationships, and any specific par-
enting or layering requirement could be scripted directly in the rig
asset. this last feature allows us to rebuild the rig on the fly without
further tweaking. This full Bezier approach is interesting because
it allows the animator to control every control point and tangent
of the curves, giving them the ability to create virtually any shape.
Moreover, the 2D version of this rig is totally transparent to the
user: The controllers of the rig are located on the head of the 3D
character and the animator doesn’t need any separated interface
for the face. From the user’s point of view, the facial rig works just
like any 3D rig.

3.2 realtime facial feedback

The next step is to provide the animators a real-time feedback of
the character’s face in order to have a WYSIWYG (What You See Is
What You Get) solution. Basically, the Bezier curves manipulated by
the animators are lofted to generate flat geometry in UV space and
the resulted shapes are plugged in a custom Maya node: This "render
and compose to texture” node takes the 2D shapes as inputs, and
generate a texture of the final face stored in VRAM. This texture is
plugged directly in the shader of the character to display an accurate
representation of the face in maya’s viewport. This compositing is

Ringard, Levastre

Texture
generation

Figure 1: the viewport generation process

executed in realtime, at a resolution that could be changed anytime
by the animators according to their own needs. Although the shapes
are ordered along the Z axis, the system cannot rely just on this to
composite the face. For instance, the pupil must be clipped when
it’s outside of the sclera (fig.1). In order to solve this issue, the
compositing node also uses binary masks associated with each
shape. The internal algorithm uses this mask to define the visibility
of the shapes for each pixel of the texture. The node performs a grid
accelerated raycasting (computed on the GPU) that goes through
every geometry and compose the final pixel color in a single pass.
Using these mask values on each facial feature of the rig allows us
to quickly provide an accurate display of the final face.

3.3 final render

The final part of the solution is focused on maximizing the flexibility
of the process until the render time of the shot: Instead of storing
and transferring the animated textures from Maya to the rendering
engine, we transfer the animated 2D shapes directly with the rest of
the character into Guerilla Render. The shapes are then processed
by a custom shader performing basically the same process as the
Maya node, except that instead of feeding a virtual texture, the
shader applies on a traceset. This process can be seen as follows:
during rendering, each time a ray hits the surface of the face, the
facial traceset is queried and a new ray is shot along the Z axis to
the 2D shapes.

Using such a process has multiple advantages: first, it’s 100%
texture free since the facial animation is transferred from animation
in the same alembic file as the body. Second, this approach gets rid
of any question regarding texture resolution: since the traceset is
computed for every pixel of the face, the resolution is virtually un-
limited. Also, since we are using actual geometry for this sampling,
effects such as motion blur can be activated and controlled directly
at rendertime.

4 CONCLUSIONS AND FUTURE WORK

This process has been successfully used during all the production
of Playmobil. Among the improvements we are planning for the
future, we want to unify the code by merging the rasterizer node
and the render shader into a single library.

ACKNOWLEDGMENTS

The authors would like to thank Pascal Bertrand, Rachid Chikh and
Olivier Rakoto.

	Abstract
	1 Introduction
	2 Candidate solutions
	2.1 Projected geometry
	2.2 Texture flipbook

	3 Our solution: 3D rigged flat shapes
	3.1 Facial rig
	3.2 realtime facial feedback
	3.3 final render

	4 Conclusions and Future Work
	Acknowledgments

