Porting Your VR Title to Oculus Quest

Eugene Elkin
eugene.elkin@survios.com

Survios, Inc.
Culver City, California, USA

ABSTRACT

Survios, a virtual reality (VR) game developer dedicated to building
active, immersive experiences that push the limits of VR innovation,
ported their VR boxing title, Creed: Rise to Glory, to the newly
anticipated Oculus Quest. Porting to this new mobile VR platform
is complex and demands extra creativity from developers when
compared to porting to the previous generation of consoles. In this
paper, Eugene Elkin, Senior Software Engineer at Survios, will share
insights and learnings from the process, covering target hardware
and its capabilities, rendering techniques, game optimization, and
more.

CCS CONCEPTS

+ Human-centered computing — Virtual reality.

KEYWORDS
virtual reality, VR, Oculus Quest

ACM Reference Format:

Eugene Elkin. 2019. Porting Your VR Title to Oculus Quest. In Proceedings
of SIGGRAPH 19 Talks. ACM, New York, NY, USA, 2 pages. https://doi.org/
10.1145/3306307.3328202

1 INTRODUCTION

Survios, a virtual reality (VR) studio dedicated to premium software
development, recently ported their VR boxing title, Creed: Rise
to Glory (CRTG), to the newly anticipated Oculus Quest, the first
all-in-one gaming system in VR. The decision to port CRTG to
Oculus Quest, with its unfamiliar hardware and its studio’s lack of
mobile development experience, presented a significant challenge
because the process did not begin until after the game had already
been shipped on PSVR, Oculus and Vive. Target hardware and its
capabilities are normally determined in the very early stages of a
game’s development cycle. A game’s mechanic decisions and visual
art style sometimes are not achievable with certain hardware, so
these considerations are front-loaded during the stages prior to
production. With Survios’ previous three titles, PSVR was chosen
as the lead skew, due to team’s familiarity with the hardware and
confidence that achieving the desired visual style at the proper
frame rate was possible.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

SIGGRAPH 19 Talks, July 28 - August 01, 2019, Los Angeles, CA, USA

© 2019 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-6317-4/19/07.

https://doi.org/10.1145/3306307.3328202

2 EXPOSITION

Developers for the Oculus Quest should become familiar with the
“tiled-based rendering” techniqueaATthe first rendering stage is
batching up all submitted triangles into small, screen-aligned tiles.
During the rasterization of these tiles, additional textures might
be required by the pixel shader and thus, will be fetched; rinse
and repeat for all other tiles. It’s important to setup an effective
debugging environment before further getting into the details of
game optimization.

At Survios, Visual Studio (VS) is the preferred integrated devel-
opment environment (IDE), however, debugging Android with VS
can be problematic. The Nvidia Tegra plugin allows for Android
remote process attaching to the Oculus Quest, but has proven to be
quite slow when stepping through code or monitoring variables. As
a solution, Survios suggests building the UE4 project with Gradle
instead of Ant; a Gradle build can be loaded up into Android Studio
IDE for a much quicker debugging process; EU4 provides a python
script that should be set up as an LLDB Startup command to help
with engine-specific data formatting during debugging. UE4 native
graphics processing unit (GPU) debuggers will not be accurate due
to tiled-based rendering, so RenderDoc is the preferred tool for
GPU captures. It’s important to note that pixel durations should
still not be taken at face value, but can be used to determine the
relative cost of the entire frame.

CPU profiling can still be done with UE4 native tools: command
“stat startfile/stopfile” will record analysis of the CPU work and the
data file can be pulled from the device back to the PC.

It’s important to get a build running on the new hardware before
any kind of profiling can be attempted. If this is not done, it’s likely
that a developer’s first roadblock will be running out of memory
due to the large texture assets and complicated materials. At the
start of the porting process, Survios had a nimble team, so stripping
all the materials in the level and replacing them with a cheap default
shader served the purpose of getting the build to runaATforcing
the highest level of detail (LOD) on all the meshes put the GPU
within the desired operational framerate.

Once the game is running with temporary visual reduction, devel-
opers can begin to inspect the initial bottlenecks: HDR, post-process
and dynamic lights and shadows should be disabled from the start
because they can be prohibitively expensive with tiled-based ren-
dering. It is worth noting that post-processing requires a second
render of each tile, with additional fetches of the frame buffer and
possible depth buffer.

Fill rate of the GPU should, hopefully, not be an issue and fram-
erate should be governed by the CPU or the draw calls. The UE
command “stat unit” will display the frame time and should give a
good indicator as to which task is taking the longest. If frame time
is over 13ms, pause the game thread and inspect the frame rate;
if frame time is under 13ms, then the frame is bound by the CPU.


https://doi.org/10.1145/3306307.3328202
https://doi.org/10.1145/3306307.3328202
https://doi.org/10.1145/3306307.3328202

SIGGRAPH *19 Talks, July 28 - August 01, 2019, Los Angeles, CA, USA

Otherwise, if no change in frame time was observed, the number
of objects being drawn is responsible.

There is no magic number for the maximum number of draw calls
but, generally speaking, they should be kept under 200. In CRTG,
Survios kept the draw calls under 150 by heavily merging game
assets — the entire environment was merged down with 3-4 tex-
tures shared between them. Packing as many textures into atlases
is recommended to minimize cache thrashing and normal maps
should ideally be eliminated in many areas to reduce fetches. ASTC
compression was applied to speed up the texture transfers, while
sometimes, masked materials were converted to translucent as an
optimization strategy made necessary due to the hardware’s design.
Non-essential materials were changed to fully rough because spec-
ular calculations can add a significant amount of instructions to
the shaders. With a lack of post-processing, such as Bloom, which
greatly influenced the original visual style, fake translucency blur
objects were introduced into the game. The dynamic spotlights,
which are crucial to the mood of the fight arenas, were simulated
with material shaders (Figures 1 and 2).

Figure 2: Oculus Quest Version. Image by Survios, Inc.

3 CONCLUSIONS AND FUTURE WORK

The final results had a similar look and feel when compared to the
original game. The biggest takeaway from our porting journey is

Elkin

not to take any shader instruction for granted. Just 10 extra instruc-
tions on pixels that might occupy a large area of the screen can
significantly impact performance; simplify the lighting model, avoid
branching and keep texture sampling to a minimum. Survios will
continue porting to Quest in anticipation of the headset’s market
success.



	Abstract
	1 Introduction
	2 Exposition
	3 Conclusions and Future Work

