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Figure 1: A 36 spp render with hair, motion blur, and di�cult illumination. The RenderMan denoiser produces very clean

results but loses detail in tricky areas such as hair. Our method preserves details and provides a moderate noise reduction,

with results similar to a 144 spp reference render. Both denoising methods use data from adjacent frames.

ABSTRACT

We present a simple, e�cient, and reliable approach to denoising �-

nal ray traced renders during VFX production. Rather than seeking

to remove all noise, we combine several simple steps that reduce

noise dramatically. Our method has performed well on a wide va-

riety of shows in Image Engine’s recent portfolio, including Game

of Thrones Season 7, Lost in Space, and Thor: Ragnarok.
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1 INTRODUCTION

Much recent denoising research has focused on removing as much

noise as possible. Many papers have demonstrated dramatic re-

sults, starting with extremely noisy images rendered with very

few samples per pixel (spp), and producing results that are clean,

plausible, and appealing [Bitterli et al. 2016; Chaitanya et al. 2017].
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Broadly, most of thesemethods are similar to joint non-localmeans

�ltering, blurring together all pixels that match some similarity cri-

teria. This can achieve exceptionally good results, but it is di�cult

to achieve consistently good results in complex cases. There is risk

of overblurring if a criteria is missed or artifacting if the similarity

criteria is itself undersampled.

Feature �lm VFX companies have di�erent requirements for de-

noising. They are prepared to spend substantial computing resources

in order to reliably obtain a high-quality image. We start with ray

traced images of reasonable quality — in the case of Image Engine,

we render at a minimum of 36 spp for primary visibility and with

enough secondary samples to clean up extreme noise from illumi-

nation. The denoisermust solve issues such as buzzing or sparkling

on very thin objects, tight corners with sharp speculars, or lighting

from di�cult-to-sample lights. The RenderMan denoiser refers to

this as removing the “long tail” of render time — stopping render-

ing before the point of diminishing returns [Pixar 2017]. Addition-

ally, we do not remove all noise. In VFX, compositors add noise in

order to match the characteristics of real cameras. Ideally, a clean

render allows us freedom in choosing noise to add, but a small

amount of leftover noise is less objectionable than other errors.

In this environment, we noticed that our compositing artists’

approach to denoising was just to average together several adja-

cent frames using optical �ow vectors. This provided surprisingly

e�ective denoising on many production shots. Cinematic camera

motion often involves minimal screen space motion of the area

in focus. Aside from the obvious noise reduction from averaging

more samples, noise that stays coherent over a couple of frames

may be perceived as small details catching the light, rather than

objectionable buzzing.
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Figure 2: Our 5 steps. Note the errors introduced on the mirror during blurring, which are corrected by the Variance Clamp.

For illustration, we start with extreme noise, resulting in some leftover noise and a specular caustic which gets clamped.

2 METHOD

We automated and improved the approach used by our composi-

tors. Rather than incorporating information from adjacent frames

into amore complex denoising algorithm [Goddard 2014; Pixar 2017],

we blend per pixel between pure temporal blur, and some simple

alternate steps with no dependency on adjacent frames.

Figure 2 demonstrates how our steps work together. Our imple-

mentation uses a custom pixel �lter, followed by a series of image

compositing operations run on sequences of images with adjacent

frame data —we do not attempt to handle still images. All channels

of both the main image and any supplemental images (arbitrary

output variables, or AOVs) are �ltered using the same �lter kernel,

which preserves additive compositing. Our supplemental material

discusses a high-quality implementation of these steps.

Step 1 : Preprocess — Sample Clamp During ray tracing we re-

move intensity outliers that would be di�cult to average out.

A common approach is to clamp all camera samples to a �xed

brightness threshold, but we do slightly better; we use a pixel

�lter that computes a global weight multiplier for each cam-

era sample based on its total brightness. This preserves additive

compositing and reduces clamping of desirable highlights.

Step 2 : Temporal Blur Our most important step is to average 5

frames: the current frame, and 2 frames before and after. We

render AOVs for screen-space o�sets to the previous and next

frame. We sum the o�sets forward and backward, and compare

to the starting point, which yields an error representing how

well an adjacent frame matches the current point. Thresholding

this error gives us a weight for each pixel from the adjacent

frames. If the sum of weights from adjacent frames is over 2, a

pixel is replaced with a weighted average. This error calculation

does not catch shading changes on stationary geometry — for

example shadows and re�ections frommoving objects — but we

partially address this with the �nal variance clamp step.

Step 3 : Motion Blur We render a motion vector pass to identify

fast-moving pixels, which are not handled by temporal blur. We

replace these pixels with the average of a set of samples taken

along a short line segment aligned to the motion vector. Adding

extra blur aligned with existing motion blur is crude, but gener-

ally not visually objectionable.

Step 4 : Median Filter At this point, almost all pixels have been

denoised, but a few exceptional pixels will fall in between the

categories handled previously. For pixels that were not a�ected

by the previous two steps we use a median �lter variant, which

removes the worst noise. It blurs out some detail, but in practice

very few pixels are a�ected.

Step 5 : Variance Clamp Finally, we mask the previous 3 steps

to only a�ect pixels that are actually noisy. The loss of quality

from the previous steps is generally low, but there could be some

unnecessary blur or artifacts. We identify noisy areas of the im-

age with an AOVwhich estimates the variance of each pixel as a

whole, based on the variance of the subpixel samples. The �nal

pixel value is the result from the previous steps, clamped to the

original result of the preprocess, plus or minus this AOV. This

results in blurring only where necessary to remove noise.

3 CONCLUSION

The biggest di�erence between our method and most recent de-

noisingmethods is that for any output pixel, the set of source pixels

we consider is quite small. Many denoising techniques consider a

large number of possible source pixels, narrowing down this large

pool of information using similarity criteria. This allows for dra-

matic denoising but also for signi�cant errors. By considering a

small number of possible source pixels, we limit how much noise

we can remove, but also the errors that can be introduced. The be-

haviors of median �lters, motion blur, and frame averaging are all

well-understood, so worst-case errors are usually small and pre-

dictable.

This compromise has worked well for us in production. Our

method has been used without modi�cation in projects such as

Game of Thrones Season 7, Lost In Space, and Thor: Ragnarok (see

supplemental video). It has minimal requirements: only 4 AOVs

(variance, motion vectors, and 2 frame o�sets) compared to the

Renderman denoiser’s 13. It does not require expensive computa-

tion: for the 1080p sequence in Figure 1, an unoptimized imple-

mentation of our denoiser takes 10 seconds per frame on an 8-core

Xeon, compared to 100 seconds for the the RenderMan denoiser.

Without a denoiser, our default camera sampling was 64 spp, but

di�cult scenes could require 144 or even 324 spp. With the de-

noiser, almost all scenes can be rendered acceptably at 36–64 spp.
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