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ABSTRACT

Visual effects impose demanding requirements for data structures
and algorithms. They are expected to be flexible enough to support
any idea an artist or TD could think of, while being as fast as a
custom implementation developed for one purpose. Our solutions
are built on page array data structures. Our arrays can represent
a wide variety of geometry data, including polygons, and support
reference counted page sharing and constant-value page compres-
sion for memory efficiency. Our method permits reasonably fast
reading and writing in serial or parallel. We can also process data
in a page-aware manner for even better performance.
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1 INTRODUCTION

Geometry in Houdini is stored in a container called a detail, which
can contain a heterogeneous collection of primitives, e.g. polygons,
tetrahedra, and volumes, possibly together. Each primitive has one
or more unique vertices that reference points. Points can be shared
between primitives. Each type of element (detail, primitives, ver-
tices, points) can have arbitrary data, known as attributes, added at
any time. For example, position data could be stored on points while
colors are stored on vertices, temperatures are stored on primitives,
and a tuple of filenames is stored on the detail.

Most geometry operators in Houdini copy incoming geome-
try and modify that copy. However, explicit copying would waste
memory for anything not modified, so some form of copy-on-write
[Reinders et al. 2017] is necessary. Attributes on points or primitives
are often not the same value for every element, but are often a single
value for large, contiguous spans. To avoid storing many copies of
the same value and wasting memory, local constant-compression
is necessary. Numeric attribute data can be int/float, 8/16/32/64-
bit, and any tuple size. Polygons can have any number of vertices,
and can be open (curves) or closed (surfaces). Frequently, there are
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Figure 1: Offset list data structure.

large contiguous spans of polygons with identical vertex counts
(triangles or quads); often those vertices are also sequential.

Despite all of those requirements, reading attribute data and ver-
tex lists of polygons must be fast. Further, multicore architectures
make it imperative that we can write to attribute data quickly in
parallel.

2 DATA STRUCTURES
2.1 Offset List

We frequently need to represent a sequence of integers that is
usually contiguous, for example, the list of vertices of a polygon.
For the contiguous case, a so-called "trivial" offset list, just the start
number, the size of the list, and an indication that the list is trivial
are needed.

All memory allocators we use allocate memory at even addresses,
(for allocations of 8 bytes or more), so bit 0 can be used to indicate
whether the list is trivial. If the bit is 1, the following 63 bits store
the start number, otherwise the entire 64 bits are an actual pointer
to an array of integers. This trick is used later for constant attribute
data page pointers. Bit 0 of the following 8 bytes is used to indicate
whether a polygon is closed or open, and the remaining 63 bits hold
the size of the list.

If an offset list is not trivial, duplicating the data upon copying
would be wasteful, and so we use copy-on-write referencing to
minimize overhead. We also amortize the cost of appending to lists
using a separate capacity from the size, and minimize memory
allocations by storing the reference count and the capacity in the
same allocation as the values.

2.2 Page Array

Instead of storing a numeric attribute in a single array of contiguous
memory, an array of multiple pages is used. Each page usually
contains 1024 entries, so that the page number can be determined
with a bit shift by 10 and the page offset can be determined by
ANDing with 0x3FF. However, when there is a single page, we
allow its size to be any power of two that is 1024 or less, since we
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Figure 2: Page table entry for page array data structure.

do not want 10 points to waste 1014 entries. This helps minimize
data storage for small geometry or attributes stored on the detail.

Using the same trick as trivial offset lists, a constant-value page
is indicated using bit 0 of what would otherwise be a 64-bit pointer
to the data in the page table. Pages are reference counted to avoid
copying until it is necessary. To ensure that page data is usually
aligned to 4KB, we store reference counts for each page in separate
8-byte allocations. We found that storing the reference counts in
the same allocation as the page data caused significant memory
overhead, due to allocation sizes being slightly larger than common
allocator bucket sizes. Each page table entry has 16 bytes, conve-
niently giving us up to 15 bytes for storing a page’s constant value.
For constant pages with tuples of 16 bytes or more, a page with a
single tuple is allocated, and bit 0 of its pointer is set to 1 to indicate
that it is a constant page, but this bit is masked out before reading.
Since constant pages for larger tuple sizes are frequently all zero,
we have a special case that a null pointer represents an all-zero
page, avoiding the allocation of a tuple and of a reference count.

We store an enum indicating the storage type and an integer
indicating the tuple size with the pointer to the page table. To avoid
having to always re-check the tuple size and storage type, C++
templates for the type and tuple size can be used, with a void type
indicating that the type still needs to be checked, and a -1 tuple
size indicating that the tuple size still needs to be checked, but any
other type or value indicating that the type or tuple size is known at
compile time. This allows the type and tuple size to be checked only
once at runtime, and in common cases of matching the expected
type or tuple size, they are built directly into the compiled code,
resulting in fast lookups.
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Constant pages and shared pages can sometimes be used to
significantly speed up operations. For example, if two pages refer
to the same data, their difference is zero, so computing of deltas
between two similar models for blending may only need to compare
pages with different data. Blending two constant pages only requires
blending the two representative values.

The main page array structure is also used for topology attributes,
(vertex-to-point and point-to-vertex mappings), as well as for string
attributes tracking a string index for each element. Similar shareable
pages are used for numeric array attributes, string array attributes,
and element groups.

2.3 Polygon Vertex Lists

A similar page array structure can be used, very carefully, to rep-
resent polygons, with offset lists of vertex offsets. The size of an
offset list structure is 16 bytes, so is similar to a tuple of two 64-bit
integers, with the caveat that upon destruction, any allocated array
must have its reference count decremented, and upon copying, any
allocated array must have its reference count incremented. This is
complicated by the page array’s own reference counting, so destruc-
tion (decrementing offset list reference counts) must occur only
when a page’s reference count reaches zero, and copying (incre-
menting offset list reference counts) must occur when hardening
a previously-shared page. The most substantial advantage comes
from the "constant” page representation. We can reinterpret a con-
stant page to allow a single vertex list to represent an entire page
of contiguous vertex lists with the same number of vertices. This
adds even more complication, because our constant representation
no longer indicates that all elements of the page have the same
value, but instead that they can be quickly computed from the single
value.

3 CONCLUSIONS

We implemented our original page array structure with copy-on-
write semantics for attribute data in Houdini 12.0. The promis-
ing results attained by the use of page-sharing and constant-page
optimizations led to further optimizations and generalization to
polygon and tetrahedron vertex lists in Houdini 16.0. These page
array structures have yielded dramatic memory and time savings in
Houdini, and any access time overhead relative to a single array is
negligible in practice. We plan to apply similar structures to more
primitive types in the future, and will continue to use them for
more algorithms requiring globally sparse but locally dense data.
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