
GafFour and Sequence-based Lighting
Xinling Chen

Sony Pictures Imageworks
cchen@imageworks.com

Lucas Miller
Sony Pictures Imageworks
lmiller@imageworks.com

Figure 1: Four key shots in the sequence named fun inHotel Transylvania 3 Summer Vacation. ©2018 Sony Pictures Animation
Inc. All rights reserved.

ABSTRACT
Sequence-based lighting has become increasingly popular to further
improve efficiency at Imageworks as we are producing thousands of
full CG shots each year. However, Katana slows down dramatically
as the lighting setup becomes more complicated to accommodate
the growing number of nodes which may make up the different
shots. We analyzed a large number of sequence-based lighting
scene files that were identified as slow and found that these setups
usually had tens of gaffer nodes, which each contained thousands
of nodes for light creation and manipulation. To solve this problem
we implemented a custom gaffer node for Katana, GafFour, which
greatly reduced the total number of nodes per scene file.

CCS CONCEPTS
• Computing methodologies→ Computer graphics;

KEYWORDS
lighting, key-lighting, workflow, efficiency

ACM Reference format:
Xinling Chen and Lucas Miller. 2018. GafFour and Sequence-based Lighting.
In Proceedings of SIGGRAPH ’18 Talks, Vancouver, BC, Canada, August 12-16,
2018, 2 pages.
https://doi.org/10.1145/3214745.3214773

1 INTRODUCTION
Katana is an asset-based approach to look development and lighting
for 3D computer generated scenes, providing scalability to meet
the needs of today’s most demanding CG-rendering projects. At
Imageworks, Katana has been the essential tool used by the look
development and lighting teams for animated features and VFX

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SIGGRAPH ’18 Talks, August 12-16, 2018, Vancouver, BC, Canada
© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5820-0/18/08.
https://doi.org/10.1145/3214745.3214773

projects. [LaVietes et al. 2008] Its flexible node-graph and rule-
based workflows lets artists naturally build up templates as they
work, which can then be easily shared with other team members
or reuse on other shots; Its gaffer node, GafferThree, allows artists
to manage light creation, light linking, constraints and light filters
from a one-stop control panel; create large sets of lights and control
their intensity, color and other parameters from a single item; and
build up hierarchical, inheritance-based sequence lighting. [The
Foundry 2018]

In the past few years, as the production time became shorter
for each project, lighting leads started to look to sequence-based
lighting workflows to reduce the amount of time to light an indi-
vidual shot. Key lighting often takes the largest chunk of time in
finalizing a sequence. This is because the look at this stage allows a
director or supervisor to set how a sequence is going to look with
fewer artists required than shot lighting. Once the key-lighting is
approved, it usually only takes a couple days for a few shot lighters
to finish the individual shots that make up the sequence. For key
lighters, the benefits of having one single scene that handles a se-
quence of shots is obvious. There is no need to open a different
scene when you need to work on the next shot. One change in the
key gaffer can affect all shots set up in that scene. Also it is much
faster to check the influence of the change on other shots and dial
in subsequent changes (Fig. 2). The major reason that some key
lighters shy away from this workflow is because the Katana scene
can become unbearably slow. Not only is the live scene affected, but
loading, auto-saving, and live-rendering takes much longer. Simply
moving the light accurately via manipulator can become a futile
and frustrating experience.

We analyzed the production scenes that were reported as being
slow and found that about half of the nodes in the scene were
created due to light creation and edits in the GafferThree nodes
which is shipped with Katana. As we had three animated feature
films, Hotel Transylvania 3: Summer Vacation, Smallfoot, and Spider-
Man, Into the Spider-Verse, starting lighting at about the same time,
we decided this was an area worth improving.

https://doi.org/10.1145/3214745.3214773
https://doi.org/10.1145/3214745.3214773


SIGGRAPH ’18 Talks, August 12-16, 2018, Vancouver, BC, Canada XChen, LMiller

Figure 2: A screenshot of the sequence-based lighting
setup for the sequence shown in Fig.1. The key gaffer,
GafFour_fun, sits on top of 4 branches, affecting all shots
set up the scene. Each branch is a key shot using the
downstream-edit feature to make local overrides. ©2018
Sony Pictures Animation Inc. All rights reserved.

2 SOLUTION AND IMPLEMENTATION
The primary job of Katana as a lighting tool is to create and edit
lights. Unfortunately, the one-stop control panel, GafferThree, does
not scale well when you get beyond around a hundred lights. It is
just a wrapper that gathers different nodes and relies on each node
to perform their duty, so a single light can be more than a handful
of nodes. As the number of lights and rigs increases, the number of
nodes explodes.

The solution was to write a gaffer that uses a limited number
of nodes to handle light creation and editing on multiple lights.
Every member node in the gaffer needs to be able to handle multi-
ple locations. There are two types of member nodes in our gaffer,
one is for creation, the other is for editing. For nodes that create
locations such as lights and rigs, we use arrays to store parameters
required for that type of location. Each parameter array grows as
more locations are added. For nodes that edit locations, we store
the data in sparse form – only when an edit was made to a spe-
cific location, that information would be saved on the node. This
method effectively minimized the number of nodes and number of
parameters to be used in the GafFour node.

As for how to present the data and parameter controls in a
familiar way to the user, a proxy layer was introduced which let
users view the parameters and dial them at a single location. This
layer could retrieve the data for the selected location and push back
the updated value of a parameter to the correct slot in the array for
that parameter or to the node responsible for editing that parameter
as a sparse edit. With this design, we were also able to address other
requests from our key lighters. For example, duplicating incoming
lights or rigs in downstream gaffers, renaming adopted lights and
rigs that are not present in the incoming scene, hierarchical master
material support, and others.

3 RESULTS
Unsurprisingly, GafFour is much faster than GafferThree that ships
with Katana. In our stress test, it can handle 40k lights without
any problem. The node graph will not grow as more lights are
added, because GafFour uses a limited number of nodes to handle

light creation and edits. This makes a huge difference for scenes
set up for sequence lighting. For example, we found that after we
converted all GafferThree nodes in an early sequence lighting scene
from Hotel Transylvania 3 to GafFour nodes, more than 2000 nodes
were gone, and Katana became noticeably more responsive.

The challenges we faced to speed up sequence based lighting
scenes motivated us to develop our own solution for Katana to
efficiently create and edit large sets of lights. Our custom gaffer
node, GafFour, has become the default at our facility, allowing key
lighters to take advantage of sequence-based lighting workflows.

REFERENCES
Steve LaVietes, Brian Hall, and Jeremy Selan. 2008. Katana Lighting Pipeline. In ACM

SIGGRAPH 2008 Talks (SIGGRAPH ’08). ACM, New York, NY, USA.
The Foundry. 2018. KATANA. https://www.foundry.com/products/katana. (2018).

 https://www.foundry.com/products/katana

	Abstract
	1 Introduction
	2 Solution and Implementation
	3 Results
	References

