
Automatic Photo-from-Panorama for Google Maps
Sema Berkiten

Google, Inc.
Rosália G. Schneider

Google, Inc.
Jared M. Johnson

Google, Inc.

Figure 1: A full 360o panorama (left) holds a lot of information about a scene, but it is not informative when seen as a picture
or thumbnail. Our pipeline selects a meaningful portion to be shown in these situations (right).

ABSTRACT
We introduce a technique for extracting interesting photographs
from 360o panoramas. We build on the success of convolutional
neural networks for classification to train a model that scores a
given view, using this score to find a best view. Training data for
this classification model is generated automatically from landmark
detections within Street View panoramas. We validate that our
selected views are often preferred over manually chosen ones and
have experienced an increase in user interaction when automati-
cally selected views are shown on Google Maps.
CCS CONCEPTS
• Computing methodologies→ Supervised learning by clas-
sification;
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1 INTRODUCTION AND RELATEDWORK
With the development of automatic panorama generation in mod-
ern cameras, special-purpose panorama cameras, and sophisticated
panorama stitching software, increasingly many users have begun
capturing 360o views of a scene. Compared to traditional photogra-
phy, this kind of imagery can provide a more immersive experience,
as it allows the viewer to look in any direction. However, in many
contexts, 360o panoramas have to be shown as regular, static pic-
tures, e.g. thumbnail previews in Google Maps. Viewing all of a
360o panorama at once results in an unfamiliar, distorted image
that is frequently not representative of the scene (left on Figure 1).

Our task in this work is to find the best possible photograph
inside a panorama, to be used in situations that require a traditional,
2D representation (right on Figure 1). This is equivalent to finding
camera parameters (yaw, pitch and field-of-view) that can be
used to project the image in 2D.

We define a panorama view as good if it has two main compo-
nents: First, we want our view to be representative of the panorama,
i.e. we want the camera to be pointed at the most important or in-
teresting elements. Second, we want the final composition to be
aesthetically pleasing. Our algorithm follows these two aims di-
rectly: First, we use our trained Convolutional Neural Network
(CNN) to find a representative view. Second, we refine the composi-
tion of this view through cropping to produce aesthetically pleasing
final output.

Our contributions are development and validation of a pipeline
for automatic best view selection in panoramas. While methods
exist for interestingness [Dhar et al. 2011; Isola et al. 2014] and crop-
ping of images [Fang and Zhang 2017; Zhang et al. 2014], we apply
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Figure 2: Photographs generated from panoramas with our
pipeline (right side of each view pair) vs the manually cho-
sen ones (left side of each view pair).

these techniques in the context of panoramas. Note that panoramas
look distorted when projected in 2D, such that we cannot apply
the same techniques directly. We have also shown the effectiveness
of our approach for automatically generating large-scale training
data for defining interestingness within panoramas.

2 METHOD
2.1 Data Collection
For training, we need a considerable number of labeled examples
for each class. We have approximately 12, 500manually annotated
panoramas, which we will use for validating our results, but this is
not enough for training our CNN. As such, we had to find data that
could be automatically collected to use as ground truth in training.

Views with landmarks. Landmarks are places in the world which
are the most photographed: monuments like the Eiffel Tower and
the Great Wall of China, but also natural wonders like the Matter-
horn. By relying on automated landmark detections within Street
View panoramas, we obtained the volume of training data we
needed and a reasonable assurance that the positive training data
was an interesting view within the panorama. We used a random
view within the same panorama to designate a negative example.

Landmark detections allowed us to generate hundreds of thou-
sands of positive and negative examples, without relying on human
labelings.We found that these detections generalizedwell to panora-
mas without landmarks. Meaning, the most interesting views in
panoramas look more like landmarks than less interesting views.

2.2 Algorithm
To find the best possible photograph inside a panorama, we pro-
pose a two-step algorithm where we first roughly find the most
interesting area in a panorama and then refine the result.

Classification. To leverage advances in CNNs, we pose the prob-
lem of finding the best view inside a panorama as finding a quality
score for any possible view. We train a binary classifier between
two classes: good view and bad view. In this case, the quality score
we are looking for will be the probability of a given view belonging
to the good category. We extract a number of views with wider
field-of-view than our target photograph from the panorama and
feed them to a CNN, which gives back a quality score for each
view. Our selected photograph will be the best scoring view. More
specifically, we select the set of views to analyze with fixed field-
of-view of 120o × 80o , with 8 views spaced 45o apart along the
horizon. Even though using a wider field-of-view than our target
photograph does hurt the accuracy slightly (only around 5o ), it
gives us extra freedom to fine-tune the composition which leads to
a better end result.

Table 1: User preference (%) on the different views.

(1) (2) No Preference
(1) Manual vs. (2) Ours 24.6% 19% 56.4%
(1) Manual vs. (2) Random 29% 17% 54%
(1) Ours vs. (2) Random 23.9% 17.5% 58.6%

Refinement. In the second step of our algorithm, given the best
part of a panorama with a wider view than our final target pho-
tograph, we rely on an automated cropping technique described
in [Fang and Zhang 2017]. This step improves the view chosen by
classification because the classifier cannot score every yaw, pitch,
and field-of-view combination efficiently. Also, the automatically
generated training data does not include a ground-truth field-of-
view. Consequently, after applying auto-cropping, the coarse ultra-
wide angle best view from the classifier is refined into anwide-angle,
aesthetically-pleasing composition, with a precise yaw and pitch
optical axis, and a well-defined field-of-view.

3 RESULTS
Comparison to Human Selected Views. The first evaluation we

performed was measuring the angle distance between our best view
and a human-chosen one. We compared pitch and yaw separately,
using only the classification method with the target field-of-view
and the full pipeline. For the classification method, average angular
distance is around 69o for yaw and 11o for pitch while for full
method it is around 73o for yaw and 7o for pitch.

It is expected that cutting bigger panoramas at coarser intervals
will make the results worse quantitatively however we do believe
it improved the results qualitatively, such as avoiding cutting the
tops of some buildings, as shown in Figure 2.

Human Evaluation. As a more rigorous evaluation, we showed
users 2 viewcodes and asked them which one they preferred. This
helps identify cases where the ground truth was bad, or in where
more than one ground truth would be acceptable.

We performed 3 different types of comparisons: (a) Our method
vs. Ground truth (b) Our method vs. Random (c) Ground truth vs.
Random. Three different users evaluated each result (all panoramas
in the test data set were evaluated). Our results are shown in Table 1.
The users were instructed to choose No preference unless one of
the views was clearly better than the other.

These results show that our method performs significantly better
than randomly choosing a view, while still not quite as well as
humans. Since we cannot have humans select views for the billions
of panoramas we have collected, this completely-automatic pipeline
has proven invaluable.
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