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ABSTRACT
Sea of Thieves posed a unique challenge - developing a stylised,
open world game in Unreal Engine 4, a demanding and contempo-
rary game engine focused on photo-realistic rendering. Our game
contains a large number of dynamic elements and is designed to run
on hardware ranging from integrated GPUs on a laptop, to the most
powerful modern gaming PCs. Over the course of development, we
have come up with a number of innovative techniques focused both
on keeping an open world game like ours performant and visually
appealing.

We introduced several techniques that we used to stylise and sup-
plement the look of our FFT water implementation for the game’s
oceans. We also created a new cloud rendering and simulation sys-
tem for this game, allowing for fast rendering of three-dimensional,
art-directed cloudscapeswithout using expensive raymarching tech-
niques.

To bring the world to life, we also developed other graphical
features, including a physically-based system of rendering rope-
and-pulley systems, our use of baking simulation data to textures
and real-time surface fluid simulations to model incidental water
behaviour on the GPU.
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1 WATER RENDERING
1.1 Ocean
The underlying ocean water simulation is an implementation of
the FFT technique described in [Tessendorf 2001].

The water colour is based on scattering approximations. We
blend between a deep water colour and a sub-surface water colour
based on a combination of view angle, sun direction and a wave
peak mask. The wave peak mask is generated from the FFT chop-
piness vertex offsets. Where the choppiness offset is greater, this
corresponds to wave peaks, which show more sub-surface due to
shorter distance traveled by light through the water.

Foam is generated at wave peaks using the method described in
the reference paper. It is also added around objects that intersect
the water surface within a camera centered window using depth
buffer comparisons. We progressively blur the result of the foam
buffer with feedback to simulate the foam dispersing and to give
us a softer mask, more in keeping with the style of the game. The
resulting mask is blended with artist-authored textures to give a
more stylized appearance to the foam.

Foam generation, dispersion and blending with the artist-author-
ed textures is modified based on whether the water is calm, normal
or stormy. Stormywater will have more foam to give the impression
of the churn created by the more violent waves, whereas calm water
will only show foam generation around intersecting objects.

We also apply an area specular highlight to allow for a large low
sun reflection using the closest point on sphere approximation[Karis
and Games 2013]. When looking at the water surface from below,
we apply a Snell’s Window effect to show the scene above the water
surface.
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1.2 Shallow Water Details
For shallow water features, such as water splashing on the deck
of a ship, we use a GPU water surface simulation based on [Mei
et al. 2007]. For water features such as waterfalls and streams we
supplement this by projecting the depth buffer from the perspective
of the camera onto the surface of a mesh, into the texture space of
its shallow water simulation. This allows e.g. a character intersect-
ing with a waterfall to occlude the falling stream of water, and a
character standing in a running stream to have foam interacting
with their feet where they intersect with the water surface.

2 CLOUDSCAPE RENDERING
The art direction in our game called for volumetric cloudscapes,
storms and skull-shaped clouds that would appear to be part of
the game world. Because of the performance requirements of the
system and the high degree of artistic control desired, we chose not
to pursue a ray-marched approach as favoured by modern game
titles aiming at photo-realism. Instead, we developed a system that
renders opaque geometry with simple per-vertex illumination that
approximates sub-surface scattering.

In a technique similar to and partially inspired by that detailed
in [Bahnassi and Bahnassi 2007], we render the cloud geometry
into a separate off-screen buffer. The image is then downsampled to
a quarter resolution, where the RGB channels undergo a Gaussian
blur. In addition, we save out the depth information to the alpha
channel and apply a box blur. We then project a quad in front of
the player’s camera which reads this texture and composites the
computed image back into the primary scene colour buffer.

The compositing shader uses the depth information to calculate
an approximate world-space position for every pixel, which allows
us to apply additional fogging, translucency blending and other
effects onto the image when it is being rendered. We sample a
distortion map texture to give the clouds a fluffy appearance and we
blend between low-frequency and high-frequency noise to further
give the impression of depth, based on the distance of the pixel from
the camera. For very distant clouds we apply an alpha threshold to
sharpen their edges to give them a more distinct and cartoon-like
appearance compared to the softer clouds directly overhead.

The cloud meshes are pre-distributed across a square several
miles across. During runtime, we use the wind direction to offset
all of the cloud meshes and wrap them around the player’s position
to give the impression of a continuous, moving cloudscape. We
synchronise this offset vector across all clients, allowing every
player to see the same clouds in the same relative locations to them.

We are then able to specify radial areas of high and low pressure
that can modify the distribution of clouds. This allows level artists
vary the amount of cloud cover throughout the world, using high
pressure zones to create gaps in the cloud cover that fade out and
push the cloud meshes out from inside them, and low pressure
zones that do the opposite.

3 VERTEX ANIMATION
3.1 Ropes
The rigging on our ships demanded many ropes being rendered
at the same time. We required high fidelity animated ropes that

would respond to the movement of the ship, to the players indi-
vidually controlling the sails and hold up when seen up close in
first-person view. We did not have the computational resources to
physically simulate so many rope segments, so we attempted to
find an analytical solution.

Our system allows artists to define a rope system with a start
point, an end point and any number of attachment points with
pulleys in-between. An artist can set up tolerance for how much
slack these ropes should be allowed to have. For each rope segment
we are then able to calculate the desired length of that rope. On
the CPU we use this value to solve the catenary equation and
find the parameters for the hyperbola describing that rope. These
parameters are passed into the vertex shader, which deforms an
arbitrary length of tube into the correct curve. Rope offsets are
tracked through the system to create the impression of one long
rope.

3.2 Simulation
To add fidelity to Kraken tentacle animations wrapping around a
ship, we use Houdini to simulate additional deformation and bake it
down to vertex animation textures.We authored the Kraken tentacle
wraps through our key-framed animation pipeline, then allowed
those animations to drive FEM simulations. This extra deformation
is written out to a texture that is used for vertex position, normal
and tangent look-up in the final game. We blend several states and
loops for a given type of tentacle attack into a single texture and
by having a number of matching frames, we’re able to implement
simple state machines for the tentacle, transitioning to and from
different attacks entirely within the GPU shader. This allowed us to
trade CPU cost for memory usage, as well as reducing the animators’
work as they could reuse general animation curves without having
to animate precisely down to the geometry of the ships.

Houdini also found use in generating 3D shapes for forked light-
ning in storms. We start with a randomised L-System, then pick
out the longest path. We then bake data into each vertex of the
structure, encoding information about whether that vertex is part
of the main branch or not, and how far it has traveled from the
origin. For the final asset, we rotate and scale the mesh so that
the end point is exactly one unit up above the start point. This
representation allows a vertex shader to animate the the lightning
strike, rendering the complex, realistic dynamics you might see in a
slow-motion video of a lightning bolt to add an additional, dramatic
effect to the event while keeping it believable.
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