Up Close with Simulated Crowds

Mark Adams
Blue Sky Studios
marka@blueskystudios.com

Justin Bisceglio
Blue Sky Studios
justinb@blueskystudios.com

Figure 1: A selection of crowd shots from: Epic (2013), The Peanuts Movie (2015), and Ferdinand (2017)

ABSTRACT

We discuss advancing the fine detail of deforming hero-quality
simulated crowd agents in animated feature film production. To
support character animation that is suitably framed arbitrarily close
to camera, our approach uses a novel deformation system that
combines simulation and hero-quality custom animation. Level-of-
detail optimizations are handled at render time, and artists are only
tasked with the design of a single high-quality resolution for each
character asset. Key optimizations in our rig structures are outlined
as they are fundamental to scalability, permitting our crowds to
look good while numbering in the millions.

CCS CONCEPTS

« Applied computing — Arts and humanities; - Computer
methodologies — Computer graphic;

KEYWORDS

ACM proceedings, computer animation, crowds, simulation

ACM Reference Format:

Mark Adams and Justin Bisceglio. 2018. Up Close with Simulated Crowds.
In Proceedings of SSGGRAPH ’18 Talks. ACM, New York, NY, USA, 2 pages.
https://doi.org/l().1145/3214745‘3214756

1 INTRODUCTION

At the start of our production Epic in 2011, we were tasked with de-
veloping a new crowd system that could support simulated crowds
with secondary animation including terrain adaptation, rag doll ef-
fects, as well as direct manipulation. Another requirement was that
crowd agents need to seamlessly blend in when juxtaposed with
hero animation. For these reasons, we set our goal on retaining as
much of the hero deformation rig, model, and materials as possible.
However, it was also necessary to avoid the bottleneck caused by

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

SIGGRAPH 18 Talks, August 12-16, 2018, Vancouver, BC, Canada

© 2018 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-5820-0/18/08.

https://doi.org/10.1145/3214745.3214756

baking out crowd geometry and subsequently importing this data
at render time. To address this requirement, we felt it would be most
practical to evaluate crowd rigs at render time. (This is a capability
of our in-house renderer, cgiStudio.) For each show, new features
are continually added, improving the quality and sophistication of
the animation. Here’s how it works.

2 CREATING CROWD ASSETS

We begin with an unaltered hero asset. The topology stays the same,
as do all director approved rendering attributes such as materials
and hair. The main rig is then simplified by removing any joint
or transform not directly used for deformation. The remaining
joints are then structured into a fully parented forward-kinematics
hierarchy. From here, the skeletal system is partitioned into two sets:
1.) a set that will be used by simulation software (usually skeletal
joints in the body of a character) and 2.) a set of joints that control
finer details that would otherwise tax simulation (like animation
in the face and hands). This keeps the simulation tractable. The
joints in the crowd asset will be snapped or retargeted to joints
in the hero version to capture cycle animations. To maintain a
consistent look, we replicate as much of the rig as possible using
node types supported in the evaluation system at render time. We
support blend shapes, skin clusters, wrap deformers, free-form-
deformations (FFDs), joint clusters, subdivision smoothing, and
constraints.

We use Autodesk’s Maya® for the design and animation of our
assets, and export our crowd geometry and rigs to a cgiStudio com-
patible format. During export, further optimizations are made in the
rig. Hierarchical transformations are concatenated. Complex node
networks are consolidated. In particular, f-curve and logic networks
associated with driving a blend shape attribute are folded into the
blend shape node for faster evaluation. Non-keyed attributes in the
rig are cached out, and treated as static data when evaluating rigs
with simulation data.

We also transform rig dependency graphs into evaluation stacks.
To do that, we build a relational database that records how to asso-
ciate these stacks with the shapes that they deform. Additionally,
we record any possible dependencies between the nodes in their
stacks so that nodes with multiple outputs are computed only once.


https://doi.org/10.1145/3214745.3214756
https://doi.org/10.1145/3214745.3214756

SIGGRAPH 18 Talks, August 12-16, 2018, Vancouver, BC, Canada

3 SIMULATION DATA ORGANIZATION

Our simulation data is stored as two files. The first file contains a
meta-data scene description that includes information concerning
the number of agents spawned from each asset, any global trans-
formations that may be applied to an agent, as well as any asset
variations that are applied to the agent, such as wardrobe selection
and material variation. Essentially, this data remains constant over
the entire frame range of a shot. We support a proxy display of the
crowd in Maya® with a user interface that enables post-simulation
editing of this header file.

The other file contains a database of skeletal joint animations
for each agent per frame of the shot. The database is queried by
indexing according to asset type, agent instance number, and frame
number.

4 THE EVALUATION PROCESS

With simulation data loaded, we use the following algorithm to
evaluate each shape of an agent before rendering.

Algorithm 1 Evaluate deformed meshes for all crowd agents

for i < size (crowd assets) do
use database to connect shapes with their deformation stack
for j < size (instances of asset) do
for k € {surfaces in each asset} do
for | < size (motion blur time samples) do
V'« shape vertices for surface(k)
N « deformation stack for surface(k)
for m < size (N) do
/*process stack node*/
V = evaluate (N.pop(), V)
end for
shape vertices for surface(k) « V'
end for
end for
end for
end for

5 AUGMENTING AND OVERRIDING
SIMULATION RESULTS

We use blend shapes and skin clusters to modify simulation results
and add detail that would otherwise be too costly to simulate. We
refer to three different types of overrides as baked, correctives, and
post-animation.

Baked blend shapes are inserted at the top of the asset’s defor-
mation stack by a scripted modification of the stack at render time.
Typically, these blend shapes contain offset deltas and are used to
append simulated garment detail into the asset’s animation.

Correctives are more traditional style blend shapes. They are
defined in the asset before exporting the rig. However, the key-
framed weights used in these blend shapes are not simulated. They
are read as cycle data from an independent file also at render time.

Post-animation refers to fine detail animation through localized
skin clusters for highly articulated regions of the character, often in
the face and hands. Here, joint transformations are stored relative
to some parent transformation contained in the simulation data.

Mark Adams and Justin Bisceglio

Figure 2: An example partitioning of skeletal joints. Simu-
lation joints are highlighted in green, and non-simulated
joints are highlighted in magenta.

Post-animation skin clusters and corrective blend shapes in turn
drive complex rig components in the head and hands adding nu-
anced deformations, bringing the agents to life and looking natural
when rendered up close. The head rig typically consists of several
FFDs. These FFDs are skinned and overlap one another. Each has
it’s own weight map and the results are mixed together in a blend
shape. Post-animation skin clusters also support animated bind
poses. These permit localized pose-specific deformations which
help sculpt deformations around a character’s mouth and eyes.

Figure 3: FFDs in action on a crowd asset

6 RENDERING

Once we have computed the deformed shapes for a crowd agent,
we may render the geometry directly as a subdivision surface, or
we may use the geometry to influence a coarse voxelization of the
undeformed agent. Here, the geometry acts as a wrap deformation
while creating a voxelization cache. A cached voxelization reduces
the memory overhead for rendering crowds, but it is limited to
crowds in the distant background.

cgiStudio supports procedural textures and tracking to subdivi-
sion patches directly, which allows us to avoid the storage over-
head of texture maps and micro-facet geometry for accelerated
ray-tracing. As a result, our renderer scales well as scene data
increases, permitting us to render a large number of uniquely de-
forming crowd agents as subdivision surfaces in the foreground.



	Abstract
	1 Introduction
	2 Creating Crowd Assets
	3 Simulation Data Organization
	4 The Evaluation Process
	5 Augmenting and Overriding Simulation Results
	6 Rendering

